maas_playground / app.py
MasterGuda's picture
Update app.py
1b50b80 verified
import gradio as gr
import json
from openai import OpenAI
def stream_chat(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
base_url,
api_key,
model_name,
):
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
reply = ""
client = OpenAI(
base_url=base_url,
api_key=api_key
)
# 发送带有流式输出的请求
for chunk in client.chat.completions.create(
model=model_name,
messages=messages,
max_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
stream=True # 启用流式输出
):
chunk_message = chunk.choices[0].delta.content
if chunk_message is not None:
reply += chunk_message
else:
reply += ""
yield reply
chatapp = gr.ChatInterface(
stream_chat,
additional_inputs=[
gr.Textbox(value="你是一个乐于助人的AI助手.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
gr.Textbox(value="", label="基础URL", type="text"),
gr.Textbox(value="", label="API Key", type="password"),
gr.Textbox(value="", label="模型名称", type="text"),
]
)
if __name__ == "__main__":
chatapp.launch(share=True)