nlp_proj / model /funcs.py
Maslov-Artem
New weights and streamlit features
b90441b
raw
history blame
8.53 kB
import time
from functools import wraps
import matplotlib.pyplot as plt
import streamlit as st
import torch
import torch.nn as nn
from sklearn.metrics import f1_score
from torch.utils.data import Dataset
def execution_time(func):
@wraps(func)
def wrapper(*args, **kwargs):
start_time = time.time()
result = func(*args, **kwargs)
end_time = time.time()
execution_seconds = end_time - start_time
st.write(f"Model calculating time = {execution_seconds:.5f} seconds")
return result
return wrapper
def create_model_and_tokenizer(model_class, tokenizer_class, pretrained_weights):
# Создаем объекты для токенизатора и модели
tokenizer = tokenizer_class.from_pretrained(pretrained_weights)
model = model_class.from_pretrained(pretrained_weights)
return model, tokenizer
def train_model(
DEVICE, epochs, model, train_loader, valid_loader, optimizer, criterion
):
# Создаем папку для сохранения весов, если она еще не существует
if not os.path.exists("weights"):
os.makedirs("weights")
# Инициализация списков для сохранения значений потерь и точности
train_losses = []
train_accuracies = []
val_losses = []
val_accuracies = []
val_f1_scores = []
best_val_loss = float("inf")
for epoch in range(epochs):
model.train()
train_loss = 0.0
total = 0
correct = 0
for batch in train_loader:
optimizer.zero_grad()
input_ids, attention_mask, labels = batch
input_ids = input_ids.to(DEVICE)
attention_mask = attention_mask.to(DEVICE)
labels = labels.to(DEVICE)
outputs = model(input_ids, attention_mask=attention_mask)
loss = criterion(outputs, labels.float().unsqueeze(1))
loss.backward()
optimizer.step()
train_loss += loss.item()
preds = torch.round(torch.sigmoid(outputs))
total += labels.size(0)
correct += (preds == labels.unsqueeze(1)).sum().item()
accuracy = correct / total
avg_train_loss = train_loss / len(train_loader)
train_losses.append(avg_train_loss)
train_accuracies.append(accuracy)
model.eval()
val_loss = 0.0
total_preds = []
total_labels = []
with torch.no_grad():
total = 0
correct = 0
for batch in valid_loader:
input_ids, attention_mask, labels = batch
input_ids = input_ids.to(DEVICE)
attention_mask = attention_mask.to(DEVICE)
labels = labels.to(DEVICE)
outputs = model(input_ids, attention_mask=attention_mask)
loss = criterion(outputs, labels.float().unsqueeze(1))
val_loss += loss.item()
preds = torch.round(torch.sigmoid(outputs))
total += labels.size(0)
correct += (preds == labels.unsqueeze(1)).sum().item()
total_preds.extend(preds.detach().cpu().numpy())
total_labels.extend(labels.detach().cpu().numpy())
accuracy = correct / total
f1 = f1_score(total_labels, total_preds)
avg_val_loss = val_loss / len(valid_loader)
val_losses.append(avg_val_loss)
val_accuracies.append(accuracy)
val_f1_scores.append(f1)
# Если это лучшая модель, сохраняем веса
if avg_val_loss < best_val_loss:
best_val_loss = avg_val_loss
torch.save(model.state_dict(), "weights/best_bert_weights.pth")
print(f"Epoch {epoch+1}")
print(
f"Training Loss: {train_losses[-1]:.4f}. Validation Loss: {val_losses[-1]:.4f}"
)
print(
f"Training Accuracy : {train_accuracies[-1]:.4f}. Validation Accuracy : {val_accuracies[-1]:.4f}"
)
print(25 * "==")
return train_losses, train_accuracies, val_losses, val_accuracies, val_f1_scores
@execution_time
def predict_sentiment(text, model, tokenizer, DEVICE):
# Модель должна быть в режиме оценки
model.eval()
# Токенизируем текст и конвертируем в тензор
encoding = tokenizer.encode_plus(
text, padding="max_length", truncation=True, max_length=512, return_tensors="pt"
)
input_ids = encoding["input_ids"].to(DEVICE)
attention_mask = encoding["attention_mask"].to(DEVICE)
# Прогоняем текст через модель
with torch.no_grad():
output = model(input_ids, attention_mask=attention_mask)
# Преобразуем выход модели в вероятность с помощью сигмоиды
probability = torch.sigmoid(output).item()
# Задаем порог
threshold = 0.5
# Возвращаем вероятность положительного или отрицательного класса
if probability >= threshold:
return 1
# return f"С вероятностью {probability*100:.2f}% это положительный отзыв"
else:
return 0
# return f"С вероятностью {(1-probability)*100:.2f}% это отрицательный отзыв"
def load_model(model_class, pretrained_weights, weights_path):
# Создаем экземпляр классификатора
model = ruBERTClassifier(model_class, pretrained_weights)
# Загружаем веса
model.load_state_dict(torch.load(weights_path, map_location="cpu"))
return model
def plot_metrics(
train_losses, train_accuracies, val_losses, val_accuracies, val_f1_scores
):
epochs = range(1, len(train_losses) + 1)
fig, axs = plt.subplots(1, 2, figsize=(15, 5))
# Первый подграфик для потерь
axs[0].plot(epochs, train_losses, "r--", label="Training Loss")
axs[0].plot(epochs, val_losses, "b--", linewidth=2, label="Validation Loss")
axs[0].set_title("Training and Validation Loss")
axs[0].set_xlabel("Epochs")
axs[0].set_ylabel("Loss")
axs[0].legend()
# Второй подграфик для точности и F1-оценки
axs[1].plot(epochs, train_accuracies, "r-", linewidth=2, label="Training Accuracy")
axs[1].plot(epochs, val_accuracies, "b-", linewidth=2, label="Validation Accuracy")
axs[1].plot(epochs, val_f1_scores, "g-", linewidth=2, label="Validation F1 Score")
axs[1].set_title("Training and Validation Accuracy and F1 Score")
axs[1].set_xlabel("Epochs")
axs[1].set_ylabel("Metric Value")
axs[1].legend()
plt.tight_layout()
plt.savefig("metrics_plot.png") # Сохраняем рисунок в файл
plt.show()
class TextClassificationDataset(Dataset):
def __init__(self, texts, labels, tokenizer):
self.texts = texts
self.labels = labels
self.tokenizer = tokenizer
def __len__(self):
return len(self.texts)
def __getitem__(self, idx):
text = self.texts[idx]
label = self.labels[idx]
encoding = self.tokenizer.encode_plus(
text,
padding="max_length",
truncation=True,
max_length=512,
return_tensors="pt",
)
return (
encoding["input_ids"].squeeze(),
encoding["attention_mask"].squeeze(),
torch.tensor(label),
)
class ruBERTClassifier(nn.Module):
def __init__(self, model_class, pretrained_weights):
super().__init__()
self.bert = model_class.from_pretrained(pretrained_weights)
# Замораживаем все параметры
for param in self.bert.parameters():
param.requires_grad = False
# Размораживаем слой BertPooler
for param in self.bert.pooler.parameters():
param.requires_grad = True
self.linear = nn.Sequential(
nn.Linear(312, 256),
nn.ReLU(),
nn.Dropout(),
nn.Linear(256, 1),
)
def forward(self, x, attention_mask):
bert_out = self.bert(x, attention_mask=attention_mask)[0][:, 0, :]
out = self.linear(bert_out)
return out