Spaces:
Sleeping
Sleeping
##################################################################### | |
### Credit: Ron Mokady / rmokady ### | |
### Original Repo: https://github.com/rmokady/CLIP_prefix_caption ### | |
##################################################################### | |
from enum import Enum | |
from collections import defaultdict | |
import os | |
from torch import nn | |
import numpy as np | |
import torch | |
import torch.nn.functional as nnf | |
import sys | |
from typing import Tuple, List, Union, Optional | |
from transformers import ( | |
GPT2Tokenizer, | |
GPT2LMHeadModel, | |
AdamW, | |
get_linear_schedule_with_warmup, | |
) | |
# import torch | |
N = type(None) | |
V = np.array | |
ARRAY = np.ndarray | |
ARRAYS = Union[Tuple[ARRAY, ...], List[ARRAY]] | |
VS = Union[Tuple[V, ...], List[V]] | |
VN = Union[V, N] | |
VNS = Union[VS, N] | |
T = torch.Tensor | |
TS = Union[Tuple[T, ...], List[T]] | |
TN = Optional[T] | |
TNS = Union[Tuple[TN, ...], List[TN]] | |
TSN = Optional[TS] | |
TA = Union[T, ARRAY] | |
WEIGHTS_PATHS = { | |
"coco": "coco_weights.pt", | |
"conceptual-captions": "conceptual_weights.pt", | |
} | |
class MappingType(Enum): | |
MLP = 'mlp' | |
Transformer = 'transformer' | |
class MLP(nn.Module): | |
def forward(self, x: T) -> T: | |
return self.model(x) | |
def __init__(self, sizes: Tuple[int, ...], bias=True, act=nn.Tanh): | |
super(MLP, self).__init__() | |
layers = [] | |
for i in range(len(sizes) - 1): | |
layers.append(nn.Linear(sizes[i], sizes[i + 1], bias=bias)) | |
if i < len(sizes) - 2: | |
layers.append(act()) | |
self.model = nn.Sequential(*layers) | |
class MlpTransformer(nn.Module): | |
def __init__(self, in_dim, h_dim, out_d: Optional[int] = None, act=nnf.relu, dropout=0.): | |
super().__init__() | |
out_d = out_d if out_d is not None else in_dim | |
self.fc1 = nn.Linear(in_dim, h_dim) | |
self.act = act | |
self.fc2 = nn.Linear(h_dim, out_d) | |
self.dropout = nn.Dropout(dropout) | |
def forward(self, x): | |
x = self.fc1(x) | |
x = self.act(x) | |
x = self.dropout(x) | |
x = self.fc2(x) | |
x = self.dropout(x) | |
return x | |
class MultiHeadAttention(nn.Module): | |
def __init__(self, dim_self, dim_ref, num_heads, bias=True, dropout=0.): | |
super().__init__() | |
self.num_heads = num_heads | |
head_dim = dim_self // num_heads | |
self.scale = head_dim ** -0.5 | |
self.to_queries = nn.Linear(dim_self, dim_self, bias=bias) | |
self.to_keys_values = nn.Linear(dim_ref, dim_self * 2, bias=bias) | |
self.project = nn.Linear(dim_self, dim_self) | |
self.dropout = nn.Dropout(dropout) | |
def forward(self, x, y=None, mask=None): | |
y = y if y is not None else x | |
b, n, c = x.shape | |
_, m, d = y.shape | |
# b n h dh | |
queries = self.to_queries(x).reshape(b, n, self.num_heads, c // self.num_heads) | |
# b m 2 h dh | |
keys_values = self.to_keys_values(y).reshape(b, m, 2, self.num_heads, c // self.num_heads) | |
keys, values = keys_values[:, :, 0], keys_values[:, :, 1] | |
attention = torch.einsum('bnhd,bmhd->bnmh', queries, keys) * self.scale | |
if mask is not None: | |
if mask.dim() == 2: | |
mask = mask.unsqueeze(1) | |
attention = attention.masked_fill(mask.unsqueeze(3), float("-inf")) | |
attention = attention.softmax(dim=2) | |
out = torch.einsum('bnmh,bmhd->bnhd', attention, values).reshape(b, n, c) | |
out = self.project(out) | |
return out, attention | |
class TransformerLayer(nn.Module): | |
def forward_with_attention(self, x, y=None, mask=None): | |
x_, attention = self.attn(self.norm1(x), y, mask) | |
x = x + x_ | |
x = x + self.mlp(self.norm2(x)) | |
return x, attention | |
def forward(self, x, y=None, mask=None): | |
x = x + self.attn(self.norm1(x), y, mask)[0] | |
x = x + self.mlp(self.norm2(x)) | |
return x | |
def __init__(self, dim_self, dim_ref, num_heads, mlp_ratio=4., bias=False, dropout=0., act=nnf.relu, | |
norm_layer: nn.Module = nn.LayerNorm): | |
super().__init__() | |
self.norm1 = norm_layer(dim_self) | |
self.attn = MultiHeadAttention(dim_self, dim_ref, num_heads, bias=bias, dropout=dropout) | |
self.norm2 = norm_layer(dim_self) | |
self.mlp = MlpTransformer(dim_self, int(dim_self * mlp_ratio), act=act, dropout=dropout) | |
class Transformer(nn.Module): | |
def forward_with_attention(self, x, y=None, mask=None): | |
attentions = [] | |
for layer in self.layers: | |
x, att = layer.forward_with_attention(x, y, mask) | |
attentions.append(att) | |
return x, attentions | |
def forward(self, x, y=None, mask=None): | |
for i, layer in enumerate(self.layers): | |
if i % 2 == 0 and self.enc_dec: # cross | |
x = layer(x, y) | |
elif self.enc_dec: # self | |
x = layer(x, x, mask) | |
else: # self or cross | |
x = layer(x, y, mask) | |
return x | |
def __init__(self, dim_self: int, num_heads: int, num_layers: int, dim_ref: Optional[int] = None, | |
mlp_ratio: float = 2., act=nnf.relu, norm_layer: nn.Module = nn.LayerNorm, enc_dec: bool = False): | |
super(Transformer, self).__init__() | |
dim_ref = dim_ref if dim_ref is not None else dim_self | |
self.enc_dec = enc_dec | |
if enc_dec: | |
num_layers = num_layers * 2 | |
layers = [] | |
for i in range(num_layers): | |
if i % 2 == 0 and enc_dec: # cross | |
layers.append(TransformerLayer(dim_self, dim_ref, num_heads, mlp_ratio, act=act, norm_layer=norm_layer)) | |
elif enc_dec: # self | |
layers.append(TransformerLayer(dim_self, dim_self, num_heads, mlp_ratio, act=act, norm_layer=norm_layer)) | |
else: # self or cross | |
layers.append(TransformerLayer(dim_self, dim_ref, num_heads, mlp_ratio, act=act, norm_layer=norm_layer)) | |
self.layers = nn.ModuleList(layers) | |
class TransformerMapper(nn.Module): | |
def forward(self, x): | |
x = self.linear(x).view(x.shape[0], self.clip_length, -1) | |
prefix = self.prefix_const.unsqueeze(0).expand(x.shape[0], *self.prefix_const.shape) | |
prefix = torch.cat((x, prefix), dim=1) | |
out = self.transformer(prefix)[:, self.clip_length:] | |
return out | |
def __init__(self, dim_clip: int, dim_embedding: int, prefix_length: int, clip_length: int, num_layers: int = 8): | |
super(TransformerMapper, self).__init__() | |
self.clip_length = clip_length | |
self.transformer = Transformer(dim_embedding, 8, num_layers) | |
self.linear = nn.Linear(dim_clip, clip_length * dim_embedding) | |
self.prefix_const = nn.Parameter(torch.randn(prefix_length, dim_embedding), requires_grad=True) | |
class ClipCaptionModel(nn.Module): | |
def get_dummy_token(self, batch_size: int, device: torch.device) -> torch.Tensor: | |
return torch.zeros(batch_size, self.prefix_length, dtype=torch.int64, device=device) | |
def forward(self, tokens: torch.Tensor, prefix: torch.Tensor, mask: Optional[torch.Tensor] = None, | |
labels: Optional[torch.Tensor] = None): | |
embedding_text = self.gpt.transformer.wte(tokens) | |
if prefix is not None: | |
prefix_projections = self.clip_project(prefix).view(-1, self.prefix_length, self.gpt_embedding_size) | |
embedding_text = torch.cat((prefix_projections, embedding_text), dim=1) | |
if labels is not None: | |
dummy_token = self.get_dummy_token(tokens.shape[0], tokens.device) | |
labels = torch.cat((dummy_token, tokens), dim=1) | |
out = self.gpt(inputs_embeds=embedding_text, labels=labels, attention_mask=mask) | |
return out | |
def __init__(self, prefix_length: int, clip_length: Optional[int] = None, prefix_size: int = 512, | |
num_layers: int = 8, mapping_type: MappingType = MappingType.MLP): | |
super(ClipCaptionModel, self).__init__() | |
self.prefix_size = prefix_size | |
self.prefix_length = prefix_length | |
self.gpt = GPT2LMHeadModel.from_pretrained('gpt2') | |
self.gpt_embedding_size = self.gpt.transformer.wte.weight.shape[1] | |
if mapping_type == MappingType.MLP: | |
self.clip_project = MLP((prefix_size, (self.gpt_embedding_size * prefix_length) // 2, | |
self.gpt_embedding_size * prefix_length)) | |
else: | |
self.clip_project = TransformerMapper(prefix_size, self.gpt_embedding_size, prefix_length, | |
clip_length, num_layers) | |
class ClipCaptionPrefix(ClipCaptionModel): | |
def parameters(self, recurse: bool = True): | |
return self.clip_project.parameters() | |
def train(self, mode: bool = True): | |
super(ClipCaptionPrefix, self).train(mode) | |
self.gpt.eval() | |
return self | |
def generate_beam( | |
model, | |
tokenizer, | |
beam_size: int = 5, | |
prompt=None, | |
embed=None, | |
#entry_length=67, | |
entry_length=150, | |
#temperature=1.0, | |
temperature=0.7, | |
stop_token: str = ".", | |
no_repeat_ngram = 3, | |
#no_repeat_ngram = None, | |
): | |
model.eval() | |
stop_token_index = tokenizer.encode(stop_token)[0] | |
tokens = None | |
scores = None | |
device = next(model.parameters()).device | |
seq_lengths = torch.ones(beam_size, device=device) | |
is_stopped = torch.zeros(beam_size, device=device, dtype=torch.bool) | |
filter_value = -float("Inf") | |
with torch.no_grad(): | |
if embed is not None: | |
generated = embed | |
else: | |
if tokens is None: | |
tokens = torch.tensor(tokenizer.encode(prompt)) | |
tokens = tokens.unsqueeze(0).to(device) | |
generated = model.gpt.transformer.wte(tokens) | |
stop_seq = tokenizer.encode('<STOP>') | |
for i in range(entry_length): | |
outputs = model.gpt(inputs_embeds=generated) | |
logits = outputs.logits | |
logits = logits[:, -1, :] / (temperature if temperature > 0 else 1.0) | |
logits = logits.softmax(-1).log() | |
# prevent repeated ngrams | |
if no_repeat_ngram is not None: | |
if tokens is not None: | |
for b in range(beam_size): | |
tokens_list = tokens[b].tolist() | |
for idx in range(len(tokens_list) - no_repeat_ngram): | |
subseq = tokens_list[idx:idx+no_repeat_ngram] | |
if tokens_list[-no_repeat_ngram+1:] == subseq[:-1] and subseq[-1] not in stop_seq: | |
logits[b, subseq[-1]] = filter_value | |
if scores is None: | |
scores, next_tokens = logits.topk(beam_size, -1) | |
generated = generated.expand(beam_size, *generated.shape[1:]) | |
next_tokens, scores = next_tokens.permute(1, 0), scores.squeeze(0) | |
if tokens is None: | |
tokens = next_tokens | |
else: | |
tokens = tokens.expand(beam_size, *tokens.shape[1:]) | |
tokens = torch.cat((tokens, next_tokens), dim=1) | |
else: | |
logits[is_stopped] = -float(np.inf) | |
logits[is_stopped, 0] = 0 | |
scores_sum = scores[:, None] + logits | |
seq_lengths[~is_stopped] += 1 | |
scores_sum_average = scores_sum / seq_lengths[:, None] | |
scores_sum_average, next_tokens = scores_sum_average.view(-1).topk( | |
beam_size, -1 | |
) | |
next_tokens_source = next_tokens // scores_sum.shape[1] | |
seq_lengths = seq_lengths[next_tokens_source] | |
next_tokens = next_tokens % scores_sum.shape[1] | |
next_tokens = next_tokens.unsqueeze(1) | |
tokens = tokens[next_tokens_source] | |
tokens = torch.cat((tokens, next_tokens), dim=1) | |
generated = generated[next_tokens_source] | |
scores = scores_sum_average * seq_lengths | |
is_stopped = is_stopped[next_tokens_source] | |
next_token_embed = model.gpt.transformer.wte(next_tokens.squeeze()).view( | |
generated.shape[0], 1, -1 | |
) | |
generated = torch.cat((generated, next_token_embed), dim=1) | |
is_stopped = is_stopped + next_tokens.eq(stop_token_index).squeeze() | |
if is_stopped.all(): | |
break | |
scores = scores / seq_lengths | |
output_list = tokens.cpu().numpy() | |
output_texts = [ | |
tokenizer.decode(output[: int(length)]) | |
for output, length in zip(output_list, seq_lengths) | |
] | |
order = scores.argsort(descending=True) | |
output_texts = [output_texts[i] for i in order] | |
return output_texts | |
def generate2( | |
model, | |
tokenizer, | |
tokens=None, | |
prompt=None, | |
embed=None, | |
entry_count=1, | |
#entry_length=67, # maximum number of words | |
entry_length=150, # maximum number of words | |
top_p=0.8, | |
nucleus=False, | |
#temperature=1.0, | |
temperature=0.7, | |
stop_token: str = ".", | |
no_repeat_ngram = 3, | |
): | |
model.eval() | |
generated_num = 0 | |
generated_list = [] | |
stop_token_index = tokenizer.encode(stop_token)[0] | |
filter_value = -1e10 | |
device = next(model.parameters()).device | |
with torch.no_grad(): | |
for entry_idx in range(entry_count): | |
if embed is not None: | |
generated = embed | |
else: | |
if tokens is None: | |
tokens = torch.tensor(tokenizer.encode(prompt)) | |
tokens = tokens.unsqueeze(0).to(device) | |
generated = model.gpt.transformer.wte(tokens) | |
ngrams = defaultdict(lambda: set()) | |
stop_seq = tokenizer.encode('<STOP>') | |
for i in range(entry_length): | |
outputs = model.gpt(inputs_embeds=generated) | |
logits = outputs.logits | |
logits = logits[:, -1, :] / (temperature if temperature > 0 else 1.0) | |
sorted_logits, sorted_indices = torch.sort(logits, descending=True) | |
cumulative_probs = torch.cumsum( | |
nnf.softmax(sorted_logits, dim=-1), dim=-1 | |
) | |
sorted_indices_to_remove = cumulative_probs > top_p | |
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[ | |
..., :-1 | |
].clone() | |
sorted_indices_to_remove[..., 0] = 0 | |
indices_to_remove = sorted_indices[sorted_indices_to_remove] | |
logits[:, indices_to_remove] = filter_value | |
# remove any potential ngram repeats, unless part of <STOP> | |
if no_repeat_ngram is not None: | |
if tokens is not None: | |
for token in ngrams[tuple(tokens[0][-no_repeat_ngram+1:].tolist())]: | |
if token not in stop_seq: | |
logits[:, token] = filter_value | |
# either sample or argmax | |
if nucleus: | |
distr = torch.distributions.categorical.Categorical(logits=logits.squeeze()) | |
next_token = distr.sample().unsqueeze(0).unsqueeze(0) | |
else: | |
next_token = torch.argmax(logits, -1).unsqueeze(0) | |
next_token_embed = model.gpt.transformer.wte(next_token) | |
if logits[:, next_token].item() == filter_value: | |
break | |
# add to our set of ngrams | |
if no_repeat_ngram is not None: | |
if tokens is not None and len(tokens[0]) >= no_repeat_ngram - 1: | |
ngrams[tuple(tokens[0][-no_repeat_ngram+1:].tolist())].add(next_token.item()) | |
if tokens is None: | |
tokens = next_token | |
else: | |
tokens = torch.cat((tokens, next_token), dim=1) | |
generated = torch.cat((generated, next_token_embed), dim=1) | |
if stop_token_index == next_token.item(): | |
break | |
output_list = tokens.cpu().tolist()[0] | |
output_text = tokenizer.decode(output_list) | |
generated_list.append(output_text) | |
return generated_list[0] | |