Spaces:
Sleeping
Sleeping
| import fitz # PyMuPDF | |
| import cv2 | |
| import numpy as np | |
| import pandas as pd | |
| import os | |
| import uuid | |
| import pypdfium2 as pdfium | |
| from PIL import Image | |
| def convert2img(path): | |
| pdf = pdfium.PdfDocument(path) | |
| page = pdf.get_page(0) | |
| pil_image = page.render().to_pil() | |
| pl1=np.array(pil_image) | |
| img = cv2.cvtColor(pl1, cv2.COLOR_RGB2BGR) | |
| return img | |
| def save_image(img): | |
| filename = f"{uuid.uuid4().hex}.png" | |
| path = os.path.join("/tmp", filename) | |
| cv2.imwrite(path, img) | |
| return filename | |
| def threshold(imgResult3): | |
| #gaus4 = cv2.GaussianBlur(imgResult3, (3,3),9) | |
| blur = cv2.blur(imgResult3,(7,7)) | |
| gray4 = cv2.cvtColor(blur, cv2.COLOR_BGR2GRAY) | |
| outsu4 = cv2.threshold(gray4, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)[1] | |
| return outsu4 | |
| def get_columns_info(outsu4, img): | |
| mask_clmns = np.ones(img.shape[:2], dtype="uint8") * 255 | |
| mask_walls = np.ones(img.shape[:2], dtype="uint8") * 255 | |
| contours, hierarchy = cv2.findContours(image=outsu4, mode=cv2.RETR_EXTERNAL, method=cv2.CHAIN_APPROX_NONE) | |
| p = [] #to save points of each contour | |
| for i, cnt in enumerate(contours): | |
| M = cv2.moments(cnt) | |
| if M['m00'] != 0.0: | |
| x1 = int(M['m10']/M['m00']) | |
| y1 = int(M['m01']/M['m00']) | |
| area = cv2.contourArea(cnt) | |
| if area > (881.0*2): | |
| perimeter = cv2.arcLength(cnt,True) | |
| #print(perimeter) | |
| cv2.drawContours(mask_walls, [cnt], -1, 0, -1) | |
| if area < (881.0 * 2) and area > 90: | |
| # maybe make it area < (881.0 * 1.5) | |
| p.append((x1,y1)) | |
| #print(area) | |
| cv2.drawContours(mask_clmns, [cnt], -1, 0, -1) | |
| return p, mask_clmns, mask_walls | |
| def get_text_from_pdf(input_pdf_path): | |
| pdf_document = fitz.open(input_pdf_path) | |
| results = [] | |
| for page_num in range(pdf_document.page_count): | |
| page = pdf_document[page_num] | |
| width, height = page.rect.width, page.rect.height # Get page dimensions | |
| text_instances = [word for word in page.get_text("words") if word[4].startswith(("C", "c")) and len(word[4]) <= 5] | |
| page.apply_redactions() | |
| return text_instances | |
| def calculate_midpoint(x1,y1,x2,y2): | |
| xm = int((x1 + x2) / 2) | |
| ym = int((y1 + y2) / 2) | |
| return (xm, ym) | |
| def getTextsPoints(x): | |
| point_list = [] | |
| pt_clm = {} | |
| for h in x: | |
| #point_list.append(calculate_midpoint(h[1],h[0],h[3],h[2])) | |
| #pt_clm[calculate_midpoint(h[1],h[0],h[3],h[2])] = h[4] | |
| point_list.append(calculate_midpoint(h[0],h[1],h[2],h[3])) | |
| pt_clm[calculate_midpoint(h[0],h[1],h[2],h[3])] = h[4] | |
| return point_list, pt_clm | |
| def fix_90_ky_val(pt_clm, derotationMatrix): | |
| new_derotated = {} | |
| for ky in pt_clm: | |
| pts = fitz.Point(ky[0], ky[1]) * derotationMatrix | |
| new_ky = ((int(pts.y),int(pts.x))) | |
| new_derotated[new_ky] = pt_clm[ky] | |
| return new_derotated | |
| def distance(point1, point2): | |
| x1, y1 = point1 | |
| x2, y2 = point2 | |
| return np.sqrt((x1 - x2) ** 2 + (y1 - y2) ** 2) | |
| def getNearestText(point_list, p): | |
| nearbyy = [] | |
| selected_clm_point = [] #save the clmn for drawing cirlce on it | |
| dis = [] | |
| txt_clmn = [] | |
| for i in range(len(p)): | |
| nearest_point = min(point_list, key=lambda point: distance(point, p[i])) | |
| dist = distance(nearest_point, p[i]) | |
| dis.append(dist) | |
| #if dist < 10: | |
| nearbyy.append(nearest_point) | |
| selected_clm_point.append(p[i]) | |
| txt_clmn.append((nearest_point, p[i])) | |
| return nearbyy, selected_clm_point, txt_clmn | |
| def fix_rotation_90(pc_coordinates, derotationMatrix): | |
| coor = [] | |
| for coordinate in pc_coordinates: | |
| pts = fitz.Point(coordinate[0], coordinate[1]) * derotationMatrix | |
| coor.append((int(pts.y),int(pts.x))) | |
| return coor | |
| def color_groups(txtpts_ky_vlu): | |
| import random | |
| unique_labels = list(set(txtpts_ky_vlu.values())) | |
| def generate_rgb(): | |
| return (random.randint(0, 255), random.randint(0, 255), random.randint(0, 255)) # RGB tuple | |
| key_colors = {key: generate_rgb() for key in unique_labels} # Assign a unique RGB color to each key | |
| return key_colors | |
| def getColumnsTypesKeyValue(nearbyy, pt_clm): | |
| words = [] | |
| for i in range(len(nearbyy)): | |
| words.append(pt_clm[nearbyy[i]]) | |
| return words | |
| def generate_legend(found_tuple): | |
| word_freq = {} | |
| for word in found_tuple: | |
| if word in word_freq: | |
| word_freq[word] += 1 | |
| else: | |
| word_freq[word] = 1 | |
| data = word_freq | |
| df = pd.DataFrame(data.items(), columns=['Column Type', 'Count']) | |
| return df | |
| def get_drawing_info(txt_clmn,txtpts_ky_vlu,key_colors): | |
| #Search for each word in the txt_clmn to get the word associated to it | |
| huge_list_clmn_clr_loc = [] | |
| for text_location, column_location in txt_clmn: | |
| word = txtpts_ky_vlu[text_location] | |
| huge_list_clmn_clr_loc.append((text_location, column_location, word, key_colors[word])) | |
| return huge_list_clmn_clr_loc #text_location, column_location, word, color | |
| def get_columns_info2(outsu4, img): | |
| mask_clmns = np.ones(img.shape[:2], dtype="uint8") * 255 | |
| mask_walls = np.ones(img.shape[:2], dtype="uint8") * 255 | |
| contours, hierarchy = cv2.findContours(image=outsu4, mode=cv2.RETR_EXTERNAL, method=cv2.CHAIN_APPROX_SIMPLE) | |
| p_column = [] #to save midpoints of each column | |
| p_wall = [] #to save midpoints of each wall | |
| wall_contour = [] | |
| all_points = [] | |
| wall_mid_and_full = {} | |
| for i, cnt in enumerate(contours): | |
| M = cv2.moments(cnt) | |
| if M['m00'] != 0.0: | |
| x1 = int(M['m10']/M['m00']) | |
| y1 = int(M['m01']/M['m00']) | |
| area = cv2.contourArea(cnt) | |
| if area > (881.0): | |
| perimeter = cv2.arcLength(cnt,True) | |
| p_wall.append((x1,y1)) | |
| #print(perimeter) | |
| cv2.drawContours(mask_walls, [cnt], -1, 0, -1) | |
| wall_contour.append(cnt) | |
| all_points.append((x1,y1)) | |
| wall_mid_and_full[(x1, y1)] = cnt | |
| if area < (881.0 * 2) and area > 90: | |
| # maybe make it area < (881.0 * 1.5) | |
| all_points.append((x1,y1)) | |
| p_column.append((x1,y1)) | |
| #print(area) | |
| cv2.drawContours(mask_clmns, [cnt], -1, 0, -1) | |
| wall_mid_and_full[(x1, y1)] = cnt | |
| return p_column, p_wall, mask_clmns, mask_walls, wall_contour, all_points, wall_mid_and_full | |
| def get_all_wall_points(wall_contours): | |
| all_contours = [] | |
| for cnt in wall_contours: | |
| contour_points = [(int(point[0][0]), int(point[0][1])) for point in cnt] | |
| all_contours.append(contour_points) | |
| return all_contours | |
| def get_text_wall_text(input_pdf_path): | |
| pdf_document = fitz.open(input_pdf_path) | |
| results = [] | |
| for page_num in range(pdf_document.page_count): | |
| page = pdf_document[page_num] | |
| width, height = page.rect.width, page.rect.height | |
| text_instances = [word for word in page.get_text("words") if word[4].startswith(("w", "W")) and len(word[4]) <= 5] | |
| page.apply_redactions() | |
| return text_instances | |
| import math | |
| def distance(p1, p2): | |
| return math.hypot(p1[0] - p2[0], p1[1] - p2[1]) | |
| def assign_walls_to_texts(text_locations, wall_locations, threshold=55): | |
| matched_texts = [] | |
| matched_walls = [] | |
| text_wall_pairs = [] | |
| for text in text_locations: | |
| nearest_wall = min(wall_locations, key=lambda wall: distance(wall, text)) | |
| dist = distance(nearest_wall, text) | |
| print(f"Text {text} -> Nearest wall {nearest_wall}, Distance: {dist:.2f}") | |
| if dist < threshold: | |
| matched_texts.append(text) | |
| matched_walls.append(nearest_wall) | |
| text_wall_pairs.append((text, nearest_wall)) | |
| return matched_texts, matched_walls, text_wall_pairs | |