Spaces:
Sleeping
Sleeping
mistralai again
Browse files
main.py
CHANGED
@@ -5,39 +5,29 @@ from huggingface_hub import InferenceClient
|
|
5 |
import uvicorn
|
6 |
from typing import Generator
|
7 |
import json # Asegúrate de que esta línea esté al principio del archivo
|
8 |
-
import torch
|
9 |
-
|
10 |
|
11 |
app = FastAPI()
|
12 |
|
13 |
-
# Initialize the InferenceClient with
|
14 |
-
client = InferenceClient("
|
15 |
|
16 |
class Item(BaseModel):
|
17 |
prompt: str
|
18 |
history: list
|
19 |
system_prompt: str
|
20 |
temperature: float = 0.8
|
21 |
-
max_new_tokens: int =
|
22 |
top_p: float = 0.15
|
23 |
repetition_penalty: float = 1.0
|
24 |
|
25 |
def format_prompt(message, history):
|
26 |
-
prompt = "<
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
prompt += f"<start_of_turn>{role}\n{entry['content']}<end_of_turn>"
|
32 |
-
# Add the current message
|
33 |
-
prompt += f"<start_of_turn>user\n{message}<end_of_turn><start_of_turn>model\n"
|
34 |
return prompt
|
35 |
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
# No changes needed in the format_prompt function unless the new model requires different prompt formatting
|
40 |
-
|
41 |
def generate_stream(item: Item) -> Generator[bytes, None, None]:
|
42 |
formatted_prompt = format_prompt(f"{item.system_prompt}, {item.prompt}", item.history)
|
43 |
generate_kwargs = {
|
@@ -51,16 +41,17 @@ def generate_stream(item: Item) -> Generator[bytes, None, None]:
|
|
51 |
|
52 |
# Stream the response from the InferenceClient
|
53 |
for response in client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True):
|
54 |
-
#
|
55 |
chunk = {
|
56 |
"text": response.token.text,
|
57 |
-
"complete": response.generated_text is not None
|
58 |
}
|
59 |
yield json.dumps(chunk).encode("utf-8") + b"\n"
|
60 |
|
61 |
@app.post("/generate/")
|
62 |
async def generate_text(item: Item):
|
|
|
63 |
return StreamingResponse(generate_stream(item), media_type="application/x-ndjson")
|
64 |
|
65 |
if __name__ == "__main__":
|
66 |
-
uvicorn.run(app, host="0.0.0.0", port=8000)
|
|
|
5 |
import uvicorn
|
6 |
from typing import Generator
|
7 |
import json # Asegúrate de que esta línea esté al principio del archivo
|
|
|
|
|
8 |
|
9 |
app = FastAPI()
|
10 |
|
11 |
+
# Initialize the InferenceClient with your model
|
12 |
+
client = InferenceClient("mistralai/Mistral-7B-Instruct-v0.2")
|
13 |
|
14 |
class Item(BaseModel):
|
15 |
prompt: str
|
16 |
history: list
|
17 |
system_prompt: str
|
18 |
temperature: float = 0.8
|
19 |
+
max_new_tokens: int = 9000
|
20 |
top_p: float = 0.15
|
21 |
repetition_penalty: float = 1.0
|
22 |
|
23 |
def format_prompt(message, history):
|
24 |
+
prompt = "<s>"
|
25 |
+
for user_prompt, bot_response in history:
|
26 |
+
prompt += f"[INST] {user_prompt} [/INST]"
|
27 |
+
prompt += f" {bot_response}</s> "
|
28 |
+
prompt += f"[INST] {message} [/INST]"
|
|
|
|
|
|
|
29 |
return prompt
|
30 |
|
|
|
|
|
|
|
|
|
|
|
31 |
def generate_stream(item: Item) -> Generator[bytes, None, None]:
|
32 |
formatted_prompt = format_prompt(f"{item.system_prompt}, {item.prompt}", item.history)
|
33 |
generate_kwargs = {
|
|
|
41 |
|
42 |
# Stream the response from the InferenceClient
|
43 |
for response in client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True):
|
44 |
+
# This assumes 'details=True' gives you a structure where you can access the text like this
|
45 |
chunk = {
|
46 |
"text": response.token.text,
|
47 |
+
"complete": response.generated_text is not None # Adjust based on how you detect completion
|
48 |
}
|
49 |
yield json.dumps(chunk).encode("utf-8") + b"\n"
|
50 |
|
51 |
@app.post("/generate/")
|
52 |
async def generate_text(item: Item):
|
53 |
+
# Stream response back to the client
|
54 |
return StreamingResponse(generate_stream(item), media_type="application/x-ndjson")
|
55 |
|
56 |
if __name__ == "__main__":
|
57 |
+
uvicorn.run(app, host="0.0.0.0", port=8000)
|