Spaces:
Sleeping
Sleeping
no message
Browse files
main.py
CHANGED
@@ -112,33 +112,59 @@ def segment_text(text: str, max_tokens=500): # Slightly less than 512 for safet
|
|
112 |
# Use spaCy to divide the document into sentences
|
113 |
doc = nlp(text)
|
114 |
sentences = [sent.text.strip() for sent in doc.sents]
|
115 |
-
|
116 |
segments = []
|
117 |
current_segment = []
|
118 |
current_length = 0
|
119 |
|
120 |
for sentence in sentences:
|
121 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
122 |
if current_length + sentence_length > max_tokens:
|
123 |
-
|
124 |
-
segments.append(' '.join(current_segment))
|
125 |
current_segment = [sentence]
|
126 |
current_length = sentence_length
|
127 |
else:
|
128 |
current_segment.append(sentence)
|
129 |
current_length += sentence_length
|
130 |
|
131 |
-
# Add the last segment if any
|
132 |
-
if current_segment:
|
133 |
segments.append(' '.join(current_segment))
|
134 |
|
135 |
return segments
|
136 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
137 |
|
138 |
classifier = pipeline("text-classification", model="distilbert-base-uncased-finetuned-sst-2-english")
|
139 |
|
140 |
def classify_segments(segments):
|
141 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
142 |
|
143 |
|
144 |
@app.post("/summarize")
|
|
|
112 |
# Use spaCy to divide the document into sentences
|
113 |
doc = nlp(text)
|
114 |
sentences = [sent.text.strip() for sent in doc.sents]
|
115 |
+
|
116 |
segments = []
|
117 |
current_segment = []
|
118 |
current_length = 0
|
119 |
|
120 |
for sentence in sentences:
|
121 |
+
sentence_words = sentence.split()
|
122 |
+
sentence_length = len(sentence_words)
|
123 |
+
|
124 |
+
# If sentence exceeds max_tokens, split it further
|
125 |
+
if sentence_length > max_tokens:
|
126 |
+
parts = split_into_parts(sentence, max_tokens)
|
127 |
+
segments.extend(parts) # Add split parts directly to segments
|
128 |
+
continue
|
129 |
+
|
130 |
if current_length + sentence_length > max_tokens:
|
131 |
+
segments.append(' '.join(current_segment))
|
|
|
132 |
current_segment = [sentence]
|
133 |
current_length = sentence_length
|
134 |
else:
|
135 |
current_segment.append(sentence)
|
136 |
current_length += sentence_length
|
137 |
|
138 |
+
if current_segment: # Add the last segment if any
|
|
|
139 |
segments.append(' '.join(current_segment))
|
140 |
|
141 |
return segments
|
142 |
|
143 |
+
def split_into_parts(text, max_tokens):
|
144 |
+
words = text.split()
|
145 |
+
parts = []
|
146 |
+
for i in range(0, len(words), max_tokens):
|
147 |
+
part = " ".join(words[i:i + max_tokens])
|
148 |
+
parts.append(part)
|
149 |
+
return parts
|
150 |
+
|
151 |
+
|
152 |
|
153 |
classifier = pipeline("text-classification", model="distilbert-base-uncased-finetuned-sst-2-english")
|
154 |
|
155 |
def classify_segments(segments):
|
156 |
+
results = []
|
157 |
+
for segment in segments:
|
158 |
+
try:
|
159 |
+
if len(segment.split()) <= 512: # Ensure segment is within the limit
|
160 |
+
result = classifier(segment)
|
161 |
+
results.append(result)
|
162 |
+
else:
|
163 |
+
results.append({"error": f"Segment too long: {len(segment.split())} tokens"})
|
164 |
+
except Exception as e:
|
165 |
+
results.append({"error": str(e)})
|
166 |
+
return results
|
167 |
+
|
168 |
|
169 |
|
170 |
@app.post("/summarize")
|