Spaces:
Sleeping
Sleeping
no message
Browse files- main.py +22 -12
- requirements.txt +1 -0
main.py
CHANGED
@@ -12,6 +12,7 @@ import os
|
|
12 |
import google.protobuf # This line should execute without errors if protobuf is installed correctly
|
13 |
import sentencepiece
|
14 |
from transformers import pipeline, AutoTokenizer,AutoModelForSeq2SeqLM
|
|
|
15 |
|
16 |
|
17 |
nltk.data.path.append(os.getenv('NLTK_DATA'))
|
@@ -102,31 +103,40 @@ tokenizer = AutoTokenizer.from_pretrained("nsi319/legal-pegasus")
|
|
102 |
model = AutoModelForSeq2SeqLM.from_pretrained("nsi319/legal-pegasus")
|
103 |
|
104 |
|
|
|
|
|
|
|
105 |
class TextRequest(BaseModel):
|
106 |
text: str
|
107 |
|
108 |
-
|
109 |
def preprocess_text(text: str) -> str:
|
110 |
-
# Normalize whitespace
|
111 |
text = re.sub(r'\s+', ' ', text.strip())
|
112 |
-
|
113 |
-
# Optional: Add additional preprocessing steps
|
114 |
-
# E.g., handling or stripping special characters, lowercasing, etc.
|
115 |
-
text = re.sub(r'[^\w\s]', '', text) # Remove punctuation for simplicity
|
116 |
-
|
117 |
return text
|
118 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
119 |
@app.post("/summarize")
|
120 |
async def summarize(request: TextRequest):
|
121 |
try:
|
122 |
processed_text = preprocess_text(request.text)
|
123 |
-
|
124 |
-
return {"
|
125 |
-
|
126 |
except Exception as e:
|
127 |
-
print(f"Error during
|
128 |
raise HTTPException(status_code=500, detail=str(e))
|
129 |
|
130 |
-
|
131 |
if __name__ == "__main__":
|
132 |
uvicorn.run(app, host="0.0.0.0", port=8000)
|
|
|
12 |
import google.protobuf # This line should execute without errors if protobuf is installed correctly
|
13 |
import sentencepiece
|
14 |
from transformers import pipeline, AutoTokenizer,AutoModelForSeq2SeqLM
|
15 |
+
import spacy
|
16 |
|
17 |
|
18 |
nltk.data.path.append(os.getenv('NLTK_DATA'))
|
|
|
103 |
model = AutoModelForSeq2SeqLM.from_pretrained("nsi319/legal-pegasus")
|
104 |
|
105 |
|
106 |
+
# Load spaCy model
|
107 |
+
nlp = spacy.load("en_core_web_sm")
|
108 |
+
|
109 |
class TextRequest(BaseModel):
|
110 |
text: str
|
111 |
|
|
|
112 |
def preprocess_text(text: str) -> str:
|
113 |
+
# Normalize whitespace and strip punctuation
|
114 |
text = re.sub(r'\s+', ' ', text.strip())
|
115 |
+
text = re.sub(r'[^\w\s]', '', text)
|
|
|
|
|
|
|
|
|
116 |
return text
|
117 |
|
118 |
+
def reduce_tokens(text: str) -> str:
|
119 |
+
# Process the text with spaCy
|
120 |
+
doc = nlp(text)
|
121 |
+
# Select sentences that might be more important - this is a simple heuristic
|
122 |
+
important_sentences = []
|
123 |
+
for sent in doc.sents:
|
124 |
+
if any(tok.dep_ == 'ROOT' for tok in sent):
|
125 |
+
important_sentences.append(sent.text)
|
126 |
+
# Join selected sentences to form the reduced text
|
127 |
+
reduced_text = ' '.join(important_sentences)
|
128 |
+
return reduced_text
|
129 |
+
|
130 |
@app.post("/summarize")
|
131 |
async def summarize(request: TextRequest):
|
132 |
try:
|
133 |
processed_text = preprocess_text(request.text)
|
134 |
+
reduced_text = reduce_tokens(processed_text)
|
135 |
+
return {"reduced_text": reduced_text}
|
136 |
+
|
137 |
except Exception as e:
|
138 |
+
print(f"Error during token reduction: {e}")
|
139 |
raise HTTPException(status_code=500, detail=str(e))
|
140 |
|
|
|
141 |
if __name__ == "__main__":
|
142 |
uvicorn.run(app, host="0.0.0.0", port=8000)
|
requirements.txt
CHANGED
@@ -7,3 +7,4 @@ nltk
|
|
7 |
transformers
|
8 |
sentencepiece
|
9 |
protobuf
|
|
|
|
7 |
transformers
|
8 |
sentencepiece
|
9 |
protobuf
|
10 |
+
spacy
|