Spaces:
Sleeping
Sleeping
from fastapi import FastAPI | |
from fastapi.responses import StreamingResponse | |
from pydantic import BaseModel | |
from huggingface_hub import InferenceClient | |
import uvicorn | |
from typing import Generator | |
import json # Asegúrate de que esta línea esté al principio del archivo | |
import torch | |
app = FastAPI() | |
# Initialize the InferenceClient with the Gemma-7b model | |
client = InferenceClient("google/gemma-7b") | |
class Item(BaseModel): | |
prompt: str | |
history: list | |
system_prompt: str | |
temperature: float = 0.8 | |
max_new_tokens: int = 8000 | |
top_p: float = 0.15 | |
repetition_penalty: float = 1.0 | |
def format_prompt(message, history): | |
prompt = "<bos>" | |
# Add history to the prompt if there's any | |
if history: | |
for entry in history: | |
role = "user" if entry['role'] == "user" else "model" | |
prompt += f"<start_of_turn>{role}\n{entry['content']}<end_of_turn>" | |
# Add the current message | |
prompt += f"<start_of_turn>user\n{message}<end_of_turn><start_of_turn>model\n" | |
return prompt | |
# No changes needed in the format_prompt function unless the new model requires different prompt formatting | |
def generate_stream(item: Item) -> Generator[bytes, None, None]: | |
formatted_prompt = format_prompt(f"{item.system_prompt}, {item.prompt}", item.history) | |
generate_kwargs = { | |
"temperature": item.temperature, | |
"max_new_tokens": item.max_new_tokens, | |
"top_p": item.top_p, | |
"repetition_penalty": item.repetition_penalty, | |
"do_sample": True, | |
"seed": 42, # Adjust or omit the seed as needed | |
} | |
# Stream the response from the InferenceClient | |
for response in client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True): | |
# Check if the 'details' flag and response structure are the same for the new model | |
chunk = { | |
"text": response.token.text, | |
"complete": response.generated_text is not None | |
} | |
yield json.dumps(chunk).encode("utf-8") + b"\n" | |
async def generate_text(item: Item): | |
return StreamingResponse(generate_stream(item), media_type="application/x-ndjson") | |
if __name__ == "__main__": | |
uvicorn.run(app, host="0.0.0.0", port=8000) |