faceswap / face_parsing /parse_mask.py
coxapi's picture
Upload 31 files
ba9144c verified
raw
history blame
4.11 kB
import cv2
import torch
import torchvision
import numpy as np
import torch.nn as nn
from PIL import Image
from tqdm import tqdm
import torch.nn.functional as F
import torchvision.transforms as transforms
from . model import BiSeNet
class SoftErosion(nn.Module):
def __init__(self, kernel_size=15, threshold=0.6, iterations=1):
super(SoftErosion, self).__init__()
r = kernel_size // 2
self.padding = r
self.iterations = iterations
self.threshold = threshold
# Create kernel
y_indices, x_indices = torch.meshgrid(torch.arange(0., kernel_size), torch.arange(0., kernel_size))
dist = torch.sqrt((x_indices - r) ** 2 + (y_indices - r) ** 2)
kernel = dist.max() - dist
kernel /= kernel.sum()
kernel = kernel.view(1, 1, *kernel.shape)
self.register_buffer('weight', kernel)
def forward(self, x):
batch_size = x.size(0) # Get the batch size
output = []
for i in tqdm(range(batch_size), desc="Soft-Erosion", leave=False):
input_tensor = x[i:i+1] # Take one input tensor from the batch
input_tensor = input_tensor.float() # Convert input to float tensor
input_tensor = input_tensor.unsqueeze(1) # Add a channel dimension
for _ in range(self.iterations - 1):
input_tensor = torch.min(input_tensor, F.conv2d(input_tensor, weight=self.weight,
groups=input_tensor.shape[1],
padding=self.padding))
input_tensor = F.conv2d(input_tensor, weight=self.weight, groups=input_tensor.shape[1],
padding=self.padding)
mask = input_tensor >= self.threshold
input_tensor[mask] = 1.0
input_tensor[~mask] /= input_tensor[~mask].max()
input_tensor = input_tensor.squeeze(1) # Remove the extra channel dimension
output.append(input_tensor.detach().cpu().numpy())
return np.array(output)
transform = transforms.Compose([
transforms.Resize((512, 512)),
transforms.ToTensor(),
transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))
])
def init_parsing_model(model_path, device="cpu"):
net = BiSeNet(19)
net.to(device)
net.load_state_dict(torch.load(model_path))
net.eval()
return net
def transform_images(imgs):
tensor_images = torch.stack([transform(Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))) for img in imgs], dim=0)
return tensor_images
def get_parsed_mask(net, imgs, classes=[1, 2, 3, 4, 5, 10, 11, 12, 13], device="cpu", batch_size=8, softness=20):
if softness > 0:
smooth_mask = SoftErosion(kernel_size=17, threshold=0.9, iterations=softness).to(device)
masks = []
for i in tqdm(range(0, len(imgs), batch_size), total=len(imgs) // batch_size, desc="Face-parsing"):
batch_imgs = imgs[i:i + batch_size]
tensor_images = transform_images(batch_imgs).to(device)
with torch.no_grad():
out = net(tensor_images)[0]
# parsing = out.argmax(dim=1)
# arget_classes = torch.tensor(classes).to(device)
# batch_masks = torch.isin(parsing, target_classes).to(device)
## torch.isin was slightly slower in my test, so using np.isin
parsing = out.argmax(dim=1).detach().cpu().numpy()
batch_masks = np.isin(parsing, classes).astype('float32')
if softness > 0:
# batch_masks = smooth_mask(batch_masks).transpose(1,0,2,3)[0]
mask_tensor = torch.from_numpy(batch_masks.copy()).float().to(device)
batch_masks = smooth_mask(mask_tensor).transpose(1,0,2,3)[0]
yield batch_masks
#masks.append(batch_masks)
#if len(masks) >= 1:
# masks = np.concatenate(masks, axis=0)
# masks = np.repeat(np.expand_dims(masks, axis=1), 3, axis=1)
# for i, mask in enumerate(masks):
# cv2.imwrite(f"mask/{i}.jpg", (mask * 255).astype("uint8"))
#return masks