Update app.py
Browse files
app.py
CHANGED
|
@@ -1,128 +1,127 @@
|
|
| 1 |
-
# import libraries
|
| 2 |
-
import streamlit as st
|
| 3 |
-
import pandas as pd
|
| 4 |
-
import matplotlib.pyplot as plt
|
| 5 |
-
import seaborn as sns
|
| 6 |
-
import joblib
|
| 7 |
-
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix
|
| 8 |
-
from sklearn.model_selection import train_test_split
|
| 9 |
-
|
| 10 |
-
#load model
|
| 11 |
-
import joblib
|
| 12 |
-
|
| 13 |
-
@st.cache_resource # Caches the model in Streamlit's memory
|
| 14 |
-
def load_model():
|
| 15 |
-
return joblib.load("SA_model.pkl") # Ensure your model is saved and available
|
| 16 |
-
|
| 17 |
-
model = load_model()
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
#load dataset
|
| 22 |
-
df = pd.read_csv('Tweets.csv', encoding='utf-8')
|
| 23 |
-
X = df['text']
|
| 24 |
-
y = df['airline_sentiment']
|
| 25 |
-
X_train, X_test, y_train, y_test = train_test_split(
|
| 26 |
-
X, y , test_size=0.33, random_state=42
|
| 27 |
-
)
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
#compute sentiment
|
| 31 |
-
class_report_data = {
|
| 32 |
-
"Precision": [0.67, 0.51, 0.88],
|
| 33 |
-
"Recall": [0.73, 0.64, 0.79],
|
| 34 |
-
"F1-score": [0.70, 0.57, 0.83]
|
| 35 |
-
}
|
| 36 |
-
|
| 37 |
-
# Properly structured DataFrame
|
| 38 |
-
class_report_df = pd.DataFrame(class_report_data, index=["Positive", "Neutral", "Negative"])
|
| 39 |
-
|
| 40 |
-
#predict text sentiment
|
| 41 |
-
def predict_sentiment(text):
|
| 42 |
-
if isinstance(text, str):
|
| 43 |
-
text = [text] # Ensure input is a list
|
| 44 |
-
|
| 45 |
-
prediction = model.predict(text) # Get numerical prediction
|
| 46 |
-
|
| 47 |
-
# Mapping numerical labels to sentiment categories
|
| 48 |
-
sentiment_mapping = {0: "Negative", 1: "Neutral", 2: "Positive"}
|
| 49 |
-
|
| 50 |
-
return sentiment_mapping.get(prediction[0], "Unknown") # Convert number to label
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
#Model Introduction
|
| 55 |
-
st.title('π Sentiment Analysis Web Application')
|
| 56 |
-
|
| 57 |
-
st.markdown(
|
| 58 |
-
"""
|
| 59 |
-
## π Introduction
|
| 60 |
-
Welcome to the **Sentiment Analysis Web Application**! This tool is designed to analyze the sentiment of text messages
|
| 61 |
-
using a **Support Vector Machine (SVM) model**. The model has been trained on the **Airline Tweets dataset from Kaggle**
|
| 62 |
-
and classifies text into three sentiment categories:
|
| 63 |
-
- β
**Positive**
|
| 64 |
-
- β **Negative**
|
| 65 |
-
- β **Neutral**
|
| 66 |
-
"""
|
| 67 |
-
)
|
| 68 |
-
|
| 69 |
-
#Tab Structuring
|
| 70 |
-
|
| 71 |
-
tab1, tab2, tab3 = st.tabs(['π Dataset Preview', 'π Model Performance', 'π Sentiment Prediction'])
|
| 72 |
-
|
| 73 |
-
with tab1:
|
| 74 |
-
st.markdown(
|
| 75 |
-
"""
|
| 76 |
-
## π Dataset Preview
|
| 77 |
-
The dataset used for training this model consists of tweets related to airline services. Each tweet is labeled
|
| 78 |
-
with one of the three sentiment categories (**Positive, Negative, or Neutral**). Below is a sample of the dataset:
|
| 79 |
-
"""
|
| 80 |
-
)
|
| 81 |
-
st.write (df)
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
with tab2:
|
| 85 |
-
st.markdown(
|
| 86 |
-
"""
|
| 87 |
-
## π Model Performance
|
| 88 |
-
Below are the key performance metrics of the trained **Support Vector Machine (SVM)** model:
|
| 89 |
-
|
| 90 |
-
- **Model Accuracy**: The percentage of correctly classified instances.
|
| 91 |
-
- **Classification Report**: Includes precision and recall for each sentiment class.
|
| 92 |
-
- **Confusion Matrix**: A visual representation comparing actual versus predicted classifications.
|
| 93 |
-
"""
|
| 94 |
-
)
|
| 95 |
-
|
| 96 |
-
st.write(f"**π Model Accuracy:** 75%")
|
| 97 |
-
|
| 98 |
-
st.markdown("### π Classification Report")
|
| 99 |
-
st.dataframe(class_report_df)
|
| 100 |
-
|
| 101 |
-
st.markdown("### π’ Confusion Matrix")
|
| 102 |
-
|
| 103 |
-
# Load and display confusion matrix image
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
st.warning("β οΈ Please enter a valid text input.")
|
|
|
|
| 1 |
+
# import libraries
|
| 2 |
+
import streamlit as st
|
| 3 |
+
import pandas as pd
|
| 4 |
+
import matplotlib.pyplot as plt
|
| 5 |
+
import seaborn as sns
|
| 6 |
+
import joblib
|
| 7 |
+
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix
|
| 8 |
+
from sklearn.model_selection import train_test_split
|
| 9 |
+
|
| 10 |
+
#load model
|
| 11 |
+
import joblib
|
| 12 |
+
|
| 13 |
+
@st.cache_resource # Caches the model in Streamlit's memory
|
| 14 |
+
def load_model():
|
| 15 |
+
return joblib.load("SA_model.pkl") # Ensure your model is saved and available
|
| 16 |
+
|
| 17 |
+
model = load_model()
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
#load dataset
|
| 22 |
+
df = pd.read_csv('Tweets.csv', encoding='utf-8')
|
| 23 |
+
X = df['text']
|
| 24 |
+
y = df['airline_sentiment']
|
| 25 |
+
X_train, X_test, y_train, y_test = train_test_split(
|
| 26 |
+
X, y , test_size=0.33, random_state=42
|
| 27 |
+
)
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
#compute sentiment
|
| 31 |
+
class_report_data = {
|
| 32 |
+
"Precision": [0.67, 0.51, 0.88],
|
| 33 |
+
"Recall": [0.73, 0.64, 0.79],
|
| 34 |
+
"F1-score": [0.70, 0.57, 0.83]
|
| 35 |
+
}
|
| 36 |
+
|
| 37 |
+
# Properly structured DataFrame
|
| 38 |
+
class_report_df = pd.DataFrame(class_report_data, index=["Positive", "Neutral", "Negative"])
|
| 39 |
+
|
| 40 |
+
#predict text sentiment
|
| 41 |
+
def predict_sentiment(text):
|
| 42 |
+
if isinstance(text, str):
|
| 43 |
+
text = [text] # Ensure input is a list
|
| 44 |
+
|
| 45 |
+
prediction = model.predict(text) # Get numerical prediction
|
| 46 |
+
|
| 47 |
+
# Mapping numerical labels to sentiment categories
|
| 48 |
+
sentiment_mapping = {0: "Negative", 1: "Neutral", 2: "Positive"}
|
| 49 |
+
|
| 50 |
+
return sentiment_mapping.get(prediction[0], "Unknown") # Convert number to label
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
#Model Introduction
|
| 55 |
+
st.title('π Sentiment Analysis Web Application')
|
| 56 |
+
|
| 57 |
+
st.markdown(
|
| 58 |
+
"""
|
| 59 |
+
## π Introduction
|
| 60 |
+
Welcome to the **Sentiment Analysis Web Application**! This tool is designed to analyze the sentiment of text messages
|
| 61 |
+
using a **Support Vector Machine (SVM) model**. The model has been trained on the **Airline Tweets dataset from Kaggle**
|
| 62 |
+
and classifies text into three sentiment categories:
|
| 63 |
+
- β
**Positive**
|
| 64 |
+
- β **Negative**
|
| 65 |
+
- β **Neutral**
|
| 66 |
+
"""
|
| 67 |
+
)
|
| 68 |
+
|
| 69 |
+
#Tab Structuring
|
| 70 |
+
|
| 71 |
+
tab1, tab2, tab3 = st.tabs(['π Dataset Preview', 'π Model Performance', 'π Sentiment Prediction'])
|
| 72 |
+
|
| 73 |
+
with tab1:
|
| 74 |
+
st.markdown(
|
| 75 |
+
"""
|
| 76 |
+
## π Dataset Preview
|
| 77 |
+
The dataset used for training this model consists of tweets related to airline services. Each tweet is labeled
|
| 78 |
+
with one of the three sentiment categories (**Positive, Negative, or Neutral**). Below is a sample of the dataset:
|
| 79 |
+
"""
|
| 80 |
+
)
|
| 81 |
+
st.write (df)
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
with tab2:
|
| 85 |
+
st.markdown(
|
| 86 |
+
"""
|
| 87 |
+
## π Model Performance
|
| 88 |
+
Below are the key performance metrics of the trained **Support Vector Machine (SVM)** model:
|
| 89 |
+
|
| 90 |
+
- **Model Accuracy**: The percentage of correctly classified instances.
|
| 91 |
+
- **Classification Report**: Includes precision and recall for each sentiment class.
|
| 92 |
+
- **Confusion Matrix**: A visual representation comparing actual versus predicted classifications.
|
| 93 |
+
"""
|
| 94 |
+
)
|
| 95 |
+
|
| 96 |
+
st.write(f"**π Model Accuracy:** 75%")
|
| 97 |
+
|
| 98 |
+
st.markdown("### π Classification Report")
|
| 99 |
+
st.dataframe(class_report_df)
|
| 100 |
+
|
| 101 |
+
st.markdown("### π’ Confusion Matrix")
|
| 102 |
+
|
| 103 |
+
# Load and display confusion matrix image
|
| 104 |
+
try:
|
| 105 |
+
st.image("/cmap.png", caption="Confusion Matrix", use_container_width=True)
|
| 106 |
+
except FileNotFoundError:
|
| 107 |
+
st.warning("β οΈ Confusion matrix image not found. Please check the file path.")
|
| 108 |
+
|
| 109 |
+
|
| 110 |
+
|
| 111 |
+
|
| 112 |
+
with tab3:
|
| 113 |
+
st.markdown(
|
| 114 |
+
"""
|
| 115 |
+
## π Sentiment Prediction
|
| 116 |
+
Type a sentence in the text box below, and the model will classify it as **Positive, Neutral, or Negative**.
|
| 117 |
+
"""
|
| 118 |
+
)
|
| 119 |
+
|
| 120 |
+
user_input = st.text_area("Type your sentence here:", "")
|
| 121 |
+
|
| 122 |
+
if st.button("π Analyze Sentiment"):
|
| 123 |
+
if user_input.strip():
|
| 124 |
+
sentiment_result = predict_sentiment(user_input)
|
| 125 |
+
st.success(f"### π― Prediction: **{sentiment_result}**")
|
| 126 |
+
else:
|
| 127 |
+
st.warning("β οΈ Please enter a valid text input.")
|
|
|