Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import AutoTokenizer, AutoModelForSequenceClassification | |
import torch | |
# Load the model and tokenizer | |
tokenizer = AutoTokenizer.from_pretrained("MarkAdamsMSBA24/ADRv2024") | |
model = AutoModelForSequenceClassification.from_pretrained("MarkAdamsMSBA24/ADRv2024") | |
# Define the prediction function | |
def get_prediction(text): | |
inputs = tokenizer(text, return_tensors="pt", max_length=512, truncation=True, padding=True) | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
prediction_scores = outputs.logits | |
predicted_class = torch.argmax(prediction_scores, dim=-1).item() | |
return f"Predicted Class: {predicted_class}", prediction_scores.tolist() | |
iface = gr.Interface( | |
fn=get_prediction, | |
inputs=gr.Textbox(lines=4, placeholder="Type your text..."), | |
outputs=[gr.Textbox(label="Prediction"), gr.Dataframe(label="Scores")], | |
title="BERT Sequence Classification Demo", | |
description="This demo uses a BERT model hosted on Hugging Face to classify text sequences." | |
) | |
if __name__ == "__main__": | |
iface.launch() | |