Update app.py
Browse files
app.py
CHANGED
|
@@ -1,64 +1,37 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
""
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
response += token
|
| 40 |
-
yield response
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
"""
|
| 44 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
| 45 |
-
"""
|
| 46 |
-
demo = gr.ChatInterface(
|
| 47 |
-
respond,
|
| 48 |
-
additional_inputs=[
|
| 49 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
| 50 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
| 51 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
| 52 |
-
gr.Slider(
|
| 53 |
-
minimum=0.1,
|
| 54 |
-
maximum=1.0,
|
| 55 |
-
value=0.95,
|
| 56 |
-
step=0.05,
|
| 57 |
-
label="Top-p (nucleus sampling)",
|
| 58 |
-
),
|
| 59 |
-
],
|
| 60 |
-
)
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
if __name__ == "__main__":
|
| 64 |
-
demo.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
| 3 |
+
from peft import PeftModel
|
| 4 |
+
|
| 5 |
+
# Model names
|
| 6 |
+
base_model_name = "unsloth/qwen2.5-coder-3b-instruct-bnb-4bit"
|
| 7 |
+
lora_model_name = "MarioCap/OCodeR_500-Qwen-2.5-Code-3B"
|
| 8 |
+
|
| 9 |
+
# Load tokenizer and base model
|
| 10 |
+
tokenizer = AutoTokenizer.from_pretrained(base_model_name)
|
| 11 |
+
base_model = AutoModelForCausalLM.from_pretrained(base_model_name, device_map="auto", trust_remote_code=True)
|
| 12 |
+
model = PeftModel.from_pretrained(base_model, lora_model_name)
|
| 13 |
+
|
| 14 |
+
# Create pipeline
|
| 15 |
+
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
| 16 |
+
|
| 17 |
+
# Chat/inference function
|
| 18 |
+
def generate(prompt, max_new_tokens=200, temperature=0.7):
|
| 19 |
+
response = pipe(prompt, max_new_tokens=max_new_tokens, temperature=temperature, do_sample=True)
|
| 20 |
+
return response[0]['generated_text']
|
| 21 |
+
|
| 22 |
+
# Gradio UI
|
| 23 |
+
with gr.Blocks() as demo:
|
| 24 |
+
gr.Markdown("### 💡 Code Assistant - OCodeR + Qwen 2.5")
|
| 25 |
+
with gr.Row():
|
| 26 |
+
prompt = gr.Textbox(label="Enter your coding prompt", placeholder="Write a Python function to reverse a string...")
|
| 27 |
+
with gr.Row():
|
| 28 |
+
max_tokens = gr.Slider(50, 1024, value=200, step=50, label="Max New Tokens")
|
| 29 |
+
temp = gr.Slider(0.1, 1.5, value=0.7, step=0.1, label="Temperature")
|
| 30 |
+
with gr.Row():
|
| 31 |
+
output = gr.Textbox(label="Generated Output")
|
| 32 |
+
with gr.Row():
|
| 33 |
+
submit = gr.Button("Generate")
|
| 34 |
+
|
| 35 |
+
submit.click(fn=generate, inputs=[prompt, max_tokens, temp], outputs=output)
|
| 36 |
+
|
| 37 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|