Spaces:
Runtime error
Runtime error
Mario12355
commited on
Commit
·
6960760
1
Parent(s):
193ae88
update
Browse files- app.py +81 -46
- requirements.txt +8 -1
app.py
CHANGED
@@ -1,64 +1,99 @@
|
|
1 |
import gradio as gr
|
2 |
-
from
|
|
|
|
|
3 |
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
8 |
|
|
|
|
|
9 |
|
10 |
-
|
11 |
-
|
12 |
-
history: list[tuple[str, str]],
|
13 |
-
system_message,
|
14 |
-
max_tokens,
|
15 |
-
temperature,
|
16 |
-
top_p,
|
17 |
-
):
|
18 |
-
messages = [{"role": "system", "content": system_message}]
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
messages.append({"role": "user", "content": val[0]})
|
23 |
-
if val[1]:
|
24 |
-
messages.append({"role": "assistant", "content": val[1]})
|
25 |
|
26 |
-
|
|
|
27 |
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
top_p=top_p,
|
36 |
-
):
|
37 |
-
token = message.choices[0].delta.content
|
38 |
|
39 |
-
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
-
|
44 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
45 |
-
"""
|
46 |
demo = gr.ChatInterface(
|
47 |
-
|
48 |
additional_inputs=[
|
49 |
-
gr.
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
minimum=0.1,
|
54 |
-
maximum=1.0,
|
55 |
-
value=0.95,
|
56 |
-
step=0.05,
|
57 |
-
label="Top-p (nucleus sampling)",
|
58 |
),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
)
|
61 |
|
62 |
-
|
63 |
if __name__ == "__main__":
|
64 |
-
demo.launch(
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
|
3 |
+
import torch
|
4 |
+
from unsloth import FastLanguageModel
|
5 |
|
6 |
+
# Modell und Tokenizer laden
|
7 |
+
model_name = "Mario12355/llama_3.1_20.11_fini_dpo"
|
8 |
+
model, tokenizer = FastLanguageModel.from_pretrained(
|
9 |
+
model_name = model_name,
|
10 |
+
max_seq_length = 2048,
|
11 |
+
dtype = None,
|
12 |
+
load_in_4bit = True,
|
13 |
+
)
|
14 |
|
15 |
+
# Dein Alpaca-Prompt Template
|
16 |
+
alpaca_prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
|
17 |
|
18 |
+
### Instruction:
|
19 |
+
{}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
+
### Input:
|
22 |
+
{}
|
|
|
|
|
|
|
23 |
|
24 |
+
### Response:
|
25 |
+
{}"""
|
26 |
|
27 |
+
def translate(
|
28 |
+
message,
|
29 |
+
history,
|
30 |
+
direction,
|
31 |
+
max_tokens=128
|
32 |
+
):
|
33 |
+
# Richtung bestimmen und Anweisung formatieren
|
34 |
+
if direction == "hochdeutsch_to_schwaebisch":
|
35 |
+
instruction = "Übersetze den hochdeutschen Text ins Schwäbische. Achte auf eine sinnvolle und korrekte Satzbildung!"
|
36 |
+
elif direction == "schwaebisch_to_hochdeutsch":
|
37 |
+
instruction = "Übersetze den schwäbischen Text ins Hochdeutsche. Achte auf eine sinnvolle und korrekte Satzbildung!"
|
38 |
+
else:
|
39 |
+
raise ValueError("Ungültige Übersetzungsrichtung")
|
40 |
|
41 |
+
# Input für das Modell vorbereiten
|
42 |
+
inputs = tokenizer(
|
43 |
+
[alpaca_prompt.format(instruction, message, "")],
|
44 |
+
return_tensors="pt"
|
45 |
+
).to(model.device)
|
|
|
|
|
|
|
46 |
|
47 |
+
# Streaming-Generator erstellen
|
48 |
+
response = ""
|
49 |
+
streamer = TextStreamer(tokenizer)
|
50 |
+
|
51 |
+
# Generator-Konfiguration
|
52 |
+
generation_config = {
|
53 |
+
"max_new_tokens": max_tokens,
|
54 |
+
"do_sample": True,
|
55 |
+
"temperature": 0.7,
|
56 |
+
"top_p": 0.95,
|
57 |
+
"streamer": streamer,
|
58 |
+
**inputs
|
59 |
+
}
|
60 |
|
61 |
+
# Text generieren und streamen
|
62 |
+
for output in model.generate(**generation_config):
|
63 |
+
# Token decodieren und zum Response hinzufügen
|
64 |
+
new_text = tokenizer.decode(output, skip_special_tokens=True)
|
65 |
+
if new_text != response: # Nur neue Tokens ausgeben
|
66 |
+
yield new_text
|
67 |
|
68 |
+
# Gradio Interface erstellen
|
|
|
|
|
69 |
demo = gr.ChatInterface(
|
70 |
+
translate,
|
71 |
additional_inputs=[
|
72 |
+
gr.Radio(
|
73 |
+
choices=["hochdeutsch_to_schwaebisch", "schwaebisch_to_hochdeutsch"],
|
74 |
+
value="hochdeutsch_to_schwaebisch",
|
75 |
+
label="Übersetzungsrichtung"
|
|
|
|
|
|
|
|
|
|
|
76 |
),
|
77 |
+
gr.Slider(
|
78 |
+
minimum=32,
|
79 |
+
maximum=256,
|
80 |
+
value=128,
|
81 |
+
step=32,
|
82 |
+
label="Maximale Anzahl neuer Tokens"
|
83 |
+
)
|
84 |
],
|
85 |
+
title="Schwäbisch Übersetzer",
|
86 |
+
description="""Dieser Übersetzer kann Texte zwischen Hochdeutsch und Schwäbisch übersetzen.
|
87 |
+
Wählen Sie die gewünschte Übersetzungsrichtung und geben Sie Ihren Text ein.""",
|
88 |
+
examples=[
|
89 |
+
["Guten Tag, wie geht es Ihnen?", "hochdeutsch_to_schwaebisch"],
|
90 |
+
["Griaß Gott, wie goht's dir?", "schwaebisch_to_hochdeutsch"]
|
91 |
+
]
|
92 |
)
|
93 |
|
|
|
94 |
if __name__ == "__main__":
|
95 |
+
demo.launch(
|
96 |
+
share=True,
|
97 |
+
show_error=True,
|
98 |
+
cache_examples=True
|
99 |
+
)
|
requirements.txt
CHANGED
@@ -1 +1,8 @@
|
|
1 |
-
huggingface_hub==0.25.2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
huggingface_hub==0.25.2
|
2 |
+
gradio>=4.0.0
|
3 |
+
transformers>=4.36.0
|
4 |
+
torch>=2.0.0
|
5 |
+
accelerate>=0.26.0
|
6 |
+
sentencepiece
|
7 |
+
protobuf
|
8 |
+
unsloth
|