Mariam-Elz commited on
Commit
7ba4e32
·
verified ·
1 Parent(s): 6855039

Upload util/flexicubes.py with huggingface_hub

Browse files
Files changed (1) hide show
  1. util/flexicubes.py +579 -579
util/flexicubes.py CHANGED
@@ -1,579 +1,579 @@
1
- # Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
2
- #
3
- # NVIDIA CORPORATION & AFFILIATES and its licensors retain all intellectual property
4
- # and proprietary rights in and to this software, related documentation
5
- # and any modifications thereto. Any use, reproduction, disclosure or
6
- # distribution of this software and related documentation without an express
7
- # license agreement from NVIDIA CORPORATION & AFFILIATES is strictly prohibited.
8
- import torch
9
- from util.tables import *
10
-
11
- __all__ = [
12
- 'FlexiCubes'
13
- ]
14
-
15
-
16
- class FlexiCubes:
17
- """
18
- This class implements the FlexiCubes method for extracting meshes from scalar fields.
19
- It maintains a series of lookup tables and indices to support the mesh extraction process.
20
- FlexiCubes, a differentiable variant of the Dual Marching Cubes (DMC) scheme, enhances
21
- the geometric fidelity and mesh quality of reconstructed meshes by dynamically adjusting
22
- the surface representation through gradient-based optimization.
23
-
24
- During instantiation, the class loads DMC tables from a file and transforms them into
25
- PyTorch tensors on the specified device.
26
-
27
- Attributes:
28
- device (str): Specifies the computational device (default is "cuda").
29
- dmc_table (torch.Tensor): Dual Marching Cubes (DMC) table that encodes the edges
30
- associated with each dual vertex in 256 Marching Cubes (MC) configurations.
31
- num_vd_table (torch.Tensor): Table holding the number of dual vertices in each of
32
- the 256 MC configurations.
33
- check_table (torch.Tensor): Table resolving ambiguity in cases C16 and C19
34
- of the DMC configurations.
35
- tet_table (torch.Tensor): Lookup table used in tetrahedralizing the isosurface.
36
- quad_split_1 (torch.Tensor): Indices for splitting a quad into two triangles
37
- along one diagonal.
38
- quad_split_2 (torch.Tensor): Alternative indices for splitting a quad into
39
- two triangles along the other diagonal.
40
- quad_split_train (torch.Tensor): Indices for splitting a quad into four triangles
41
- during training by connecting all edges to their midpoints.
42
- cube_corners (torch.Tensor): Defines the positions of a standard unit cube's
43
- eight corners in 3D space, ordered starting from the origin (0,0,0),
44
- moving along the x-axis, then y-axis, and finally z-axis.
45
- Used as a blueprint for generating a voxel grid.
46
- cube_corners_idx (torch.Tensor): Cube corners indexed as powers of 2, used
47
- to retrieve the case id.
48
- cube_edges (torch.Tensor): Edge connections in a cube, listed in pairs.
49
- Used to retrieve edge vertices in DMC.
50
- edge_dir_table (torch.Tensor): A mapping tensor that associates edge indices with
51
- their corresponding axis. For instance, edge_dir_table[0] = 0 indicates that the
52
- first edge is oriented along the x-axis.
53
- dir_faces_table (torch.Tensor): A tensor that maps the corresponding axis of shared edges
54
- across four adjacent cubes to the shared faces of these cubes. For instance,
55
- dir_faces_table[0] = [5, 4] implies that for four cubes sharing an edge along
56
- the x-axis, the first and second cubes share faces indexed as 5 and 4, respectively.
57
- This tensor is only utilized during isosurface tetrahedralization.
58
- adj_pairs (torch.Tensor):
59
- A tensor containing index pairs that correspond to neighboring cubes that share the same edge.
60
- qef_reg_scale (float):
61
- The scaling factor applied to the regularization loss to prevent issues with singularity
62
- when solving the QEF. This parameter is only used when a 'grad_func' is specified.
63
- weight_scale (float):
64
- The scale of weights in FlexiCubes. Should be between 0 and 1.
65
- """
66
-
67
- def __init__(self, device="cuda", qef_reg_scale=1e-3, weight_scale=0.99):
68
-
69
- self.device = device
70
- self.dmc_table = torch.tensor(dmc_table, dtype=torch.long, device=device, requires_grad=False)
71
- self.num_vd_table = torch.tensor(num_vd_table,
72
- dtype=torch.long, device=device, requires_grad=False)
73
- self.check_table = torch.tensor(
74
- check_table,
75
- dtype=torch.long, device=device, requires_grad=False)
76
-
77
- self.tet_table = torch.tensor(tet_table, dtype=torch.long, device=device, requires_grad=False)
78
- self.quad_split_1 = torch.tensor([0, 1, 2, 0, 2, 3], dtype=torch.long, device=device, requires_grad=False)
79
- self.quad_split_2 = torch.tensor([0, 1, 3, 3, 1, 2], dtype=torch.long, device=device, requires_grad=False)
80
- self.quad_split_train = torch.tensor(
81
- [0, 1, 1, 2, 2, 3, 3, 0], dtype=torch.long, device=device, requires_grad=False)
82
-
83
- self.cube_corners = torch.tensor([[0, 0, 0], [1, 0, 0], [0, 1, 0], [1, 1, 0], [0, 0, 1], [
84
- 1, 0, 1], [0, 1, 1], [1, 1, 1]], dtype=torch.float, device=device)
85
- self.cube_corners_idx = torch.pow(2, torch.arange(8, requires_grad=False))
86
- self.cube_edges = torch.tensor([0, 1, 1, 5, 4, 5, 0, 4, 2, 3, 3, 7, 6, 7, 2, 6,
87
- 2, 0, 3, 1, 7, 5, 6, 4], dtype=torch.long, device=device, requires_grad=False)
88
-
89
- self.edge_dir_table = torch.tensor([0, 2, 0, 2, 0, 2, 0, 2, 1, 1, 1, 1],
90
- dtype=torch.long, device=device)
91
- self.dir_faces_table = torch.tensor([
92
- [[5, 4], [3, 2], [4, 5], [2, 3]],
93
- [[5, 4], [1, 0], [4, 5], [0, 1]],
94
- [[3, 2], [1, 0], [2, 3], [0, 1]]
95
- ], dtype=torch.long, device=device)
96
- self.adj_pairs = torch.tensor([0, 1, 1, 3, 3, 2, 2, 0], dtype=torch.long, device=device)
97
- self.qef_reg_scale = qef_reg_scale
98
- self.weight_scale = weight_scale
99
-
100
- def construct_voxel_grid(self, res):
101
- """
102
- Generates a voxel grid based on the specified resolution.
103
-
104
- Args:
105
- res (int or list[int]): The resolution of the voxel grid. If an integer
106
- is provided, it is used for all three dimensions. If a list or tuple
107
- of 3 integers is provided, they define the resolution for the x,
108
- y, and z dimensions respectively.
109
-
110
- Returns:
111
- (torch.Tensor, torch.Tensor): Returns the vertices and the indices of the
112
- cube corners (index into vertices) of the constructed voxel grid.
113
- The vertices are centered at the origin, with the length of each
114
- dimension in the grid being one.
115
- """
116
- base_cube_f = torch.arange(8).to(self.device)
117
- if isinstance(res, int):
118
- res = (res, res, res)
119
- voxel_grid_template = torch.ones(res, device=self.device)
120
-
121
- res = torch.tensor([res], dtype=torch.float, device=self.device)
122
- coords = torch.nonzero(voxel_grid_template).float() / res # N, 3
123
- verts = (self.cube_corners.unsqueeze(0) / res + coords.unsqueeze(1)).reshape(-1, 3)
124
- cubes = (base_cube_f.unsqueeze(0) +
125
- torch.arange(coords.shape[0], device=self.device).unsqueeze(1) * 8).reshape(-1)
126
-
127
- verts_rounded = torch.round(verts * 10**5) / (10**5)
128
- verts_unique, inverse_indices = torch.unique(verts_rounded, dim=0, return_inverse=True)
129
- cubes = inverse_indices[cubes.reshape(-1)].reshape(-1, 8)
130
-
131
- return verts_unique - 0.5, cubes
132
-
133
- def __call__(self, x_nx3, s_n, cube_fx8, res, beta_fx12=None, alpha_fx8=None,
134
- gamma_f=None, training=False, output_tetmesh=False, grad_func=None):
135
- r"""
136
- Main function for mesh extraction from scalar field using FlexiCubes. This function converts
137
- discrete signed distance fields, encoded on voxel grids and additional per-cube parameters,
138
- to triangle or tetrahedral meshes using a differentiable operation as described in
139
- `Flexible Isosurface Extraction for Gradient-Based Mesh Optimization`_. FlexiCubes enhances
140
- mesh quality and geometric fidelity by adjusting the surface representation based on gradient
141
- optimization. The output surface is differentiable with respect to the input vertex positions,
142
- scalar field values, and weight parameters.
143
-
144
- If you intend to extract a surface mesh from a fixed Signed Distance Field without the
145
- optimization of parameters, it is suggested to provide the "grad_func" which should
146
- return the surface gradient at any given 3D position. When grad_func is provided, the process
147
- to determine the dual vertex position adapts to solve a Quadratic Error Function (QEF), as
148
- described in the `Manifold Dual Contouring`_ paper, and employs an smart splitting strategy.
149
- Please note, this approach is non-differentiable.
150
-
151
- For more details and example usage in optimization, refer to the
152
- `Flexible Isosurface Extraction for Gradient-Based Mesh Optimization`_ SIGGRAPH 2023 paper.
153
-
154
- Args:
155
- x_nx3 (torch.Tensor): Coordinates of the voxel grid vertices, can be deformed.
156
- s_n (torch.Tensor): Scalar field values at each vertex of the voxel grid. Negative values
157
- denote that the corresponding vertex resides inside the isosurface. This affects
158
- the directions of the extracted triangle faces and volume to be tetrahedralized.
159
- cube_fx8 (torch.Tensor): Indices of 8 vertices for each cube in the voxel grid.
160
- res (int or list[int]): The resolution of the voxel grid. If an integer is provided, it
161
- is used for all three dimensions. If a list or tuple of 3 integers is provided, they
162
- specify the resolution for the x, y, and z dimensions respectively.
163
- beta_fx12 (torch.Tensor, optional): Weight parameters for the cube edges to adjust dual
164
- vertices positioning. Defaults to uniform value for all edges.
165
- alpha_fx8 (torch.Tensor, optional): Weight parameters for the cube corners to adjust dual
166
- vertices positioning. Defaults to uniform value for all vertices.
167
- gamma_f (torch.Tensor, optional): Weight parameters to control the splitting of
168
- quadrilaterals into triangles. Defaults to uniform value for all cubes.
169
- training (bool, optional): If set to True, applies differentiable quad splitting for
170
- training. Defaults to False.
171
- output_tetmesh (bool, optional): If set to True, outputs a tetrahedral mesh, otherwise,
172
- outputs a triangular mesh. Defaults to False.
173
- grad_func (callable, optional): A function to compute the surface gradient at specified
174
- 3D positions (input: Nx3 positions). The function should return gradients as an Nx3
175
- tensor. If None, the original FlexiCubes algorithm is utilized. Defaults to None.
176
-
177
- Returns:
178
- (torch.Tensor, torch.LongTensor, torch.Tensor): Tuple containing:
179
- - Vertices for the extracted triangular/tetrahedral mesh.
180
- - Faces for the extracted triangular/tetrahedral mesh.
181
- - Regularizer L_dev, computed per dual vertex.
182
-
183
- .. _Flexible Isosurface Extraction for Gradient-Based Mesh Optimization:
184
- https://research.nvidia.com/labs/toronto-ai/flexicubes/
185
- .. _Manifold Dual Contouring:
186
- https://people.engr.tamu.edu/schaefer/research/dualsimp_tvcg.pdf
187
- """
188
-
189
- surf_cubes, occ_fx8 = self._identify_surf_cubes(s_n, cube_fx8)
190
- if surf_cubes.sum() == 0:
191
- return torch.zeros(
192
- (0, 3),
193
- device=self.device), torch.zeros(
194
- (0, 4),
195
- dtype=torch.long, device=self.device) if output_tetmesh else torch.zeros(
196
- (0, 3),
197
- dtype=torch.long, device=self.device), torch.zeros(
198
- (0),
199
- device=self.device)
200
- beta_fx12, alpha_fx8, gamma_f = self._normalize_weights(beta_fx12, alpha_fx8, gamma_f, surf_cubes)
201
-
202
- case_ids = self._get_case_id(occ_fx8, surf_cubes, res)
203
-
204
- surf_edges, idx_map, edge_counts, surf_edges_mask = self._identify_surf_edges(s_n, cube_fx8, surf_cubes)
205
-
206
- vd, L_dev, vd_gamma, vd_idx_map = self._compute_vd(
207
- x_nx3, cube_fx8[surf_cubes], surf_edges, s_n, case_ids, beta_fx12, alpha_fx8, gamma_f, idx_map, grad_func)
208
- vertices, faces, s_edges, edge_indices = self._triangulate(
209
- s_n, surf_edges, vd, vd_gamma, edge_counts, idx_map, vd_idx_map, surf_edges_mask, training, grad_func)
210
- if not output_tetmesh:
211
- return vertices, faces, L_dev
212
- else:
213
- vertices, tets = self._tetrahedralize(
214
- x_nx3, s_n, cube_fx8, vertices, faces, surf_edges, s_edges, vd_idx_map, case_ids, edge_indices,
215
- surf_cubes, training)
216
- return vertices, tets, L_dev
217
-
218
- def _compute_reg_loss(self, vd, ue, edge_group_to_vd, vd_num_edges):
219
- """
220
- Regularizer L_dev as in Equation 8
221
- """
222
- dist = torch.norm(ue - torch.index_select(input=vd, index=edge_group_to_vd, dim=0), dim=-1)
223
- mean_l2 = torch.zeros_like(vd[:, 0])
224
- mean_l2 = (mean_l2).index_add_(0, edge_group_to_vd, dist) / vd_num_edges.squeeze(1).float()
225
- mad = (dist - torch.index_select(input=mean_l2, index=edge_group_to_vd, dim=0)).abs()
226
- return mad
227
-
228
- def _normalize_weights(self, beta_fx12, alpha_fx8, gamma_f, surf_cubes):
229
- """
230
- Normalizes the given weights to be non-negative. If input weights are None, it creates and returns a set of weights of ones.
231
- """
232
- n_cubes = surf_cubes.shape[0]
233
-
234
- if beta_fx12 is not None:
235
- beta_fx12 = (torch.tanh(beta_fx12) * self.weight_scale + 1)
236
- else:
237
- beta_fx12 = torch.ones((n_cubes, 12), dtype=torch.float, device=self.device)
238
-
239
- if alpha_fx8 is not None:
240
- alpha_fx8 = (torch.tanh(alpha_fx8) * self.weight_scale + 1)
241
- else:
242
- alpha_fx8 = torch.ones((n_cubes, 8), dtype=torch.float, device=self.device)
243
-
244
- if gamma_f is not None:
245
- gamma_f = torch.sigmoid(gamma_f) * self.weight_scale + (1 - self.weight_scale)/2
246
- else:
247
- gamma_f = torch.ones((n_cubes), dtype=torch.float, device=self.device)
248
-
249
- return beta_fx12[surf_cubes], alpha_fx8[surf_cubes], gamma_f[surf_cubes]
250
-
251
- @torch.no_grad()
252
- def _get_case_id(self, occ_fx8, surf_cubes, res):
253
- """
254
- Obtains the ID of topology cases based on cell corner occupancy. This function resolves the
255
- ambiguity in the Dual Marching Cubes (DMC) configurations as described in Section 1.3 of the
256
- supplementary material. It should be noted that this function assumes a regular grid.
257
- """
258
- case_ids = (occ_fx8[surf_cubes] * self.cube_corners_idx.to(self.device).unsqueeze(0)).sum(-1)
259
-
260
- problem_config = self.check_table.to(self.device)[case_ids]
261
- to_check = problem_config[..., 0] == 1
262
- problem_config = problem_config[to_check]
263
- if not isinstance(res, (list, tuple)):
264
- res = [res, res, res]
265
-
266
- # The 'problematic_configs' only contain configurations for surface cubes. Next, we construct a 3D array,
267
- # 'problem_config_full', to store configurations for all cubes (with default config for non-surface cubes).
268
- # This allows efficient checking on adjacent cubes.
269
- problem_config_full = torch.zeros(list(res) + [5], device=self.device, dtype=torch.long)
270
- vol_idx = torch.nonzero(problem_config_full[..., 0] == 0) # N, 3
271
- vol_idx_problem = vol_idx[surf_cubes][to_check]
272
- problem_config_full[vol_idx_problem[..., 0], vol_idx_problem[..., 1], vol_idx_problem[..., 2]] = problem_config
273
- vol_idx_problem_adj = vol_idx_problem + problem_config[..., 1:4]
274
-
275
- within_range = (
276
- vol_idx_problem_adj[..., 0] >= 0) & (
277
- vol_idx_problem_adj[..., 0] < res[0]) & (
278
- vol_idx_problem_adj[..., 1] >= 0) & (
279
- vol_idx_problem_adj[..., 1] < res[1]) & (
280
- vol_idx_problem_adj[..., 2] >= 0) & (
281
- vol_idx_problem_adj[..., 2] < res[2])
282
-
283
- vol_idx_problem = vol_idx_problem[within_range]
284
- vol_idx_problem_adj = vol_idx_problem_adj[within_range]
285
- problem_config = problem_config[within_range]
286
- problem_config_adj = problem_config_full[vol_idx_problem_adj[..., 0],
287
- vol_idx_problem_adj[..., 1], vol_idx_problem_adj[..., 2]]
288
- # If two cubes with cases C16 and C19 share an ambiguous face, both cases are inverted.
289
- to_invert = (problem_config_adj[..., 0] == 1)
290
- idx = torch.arange(case_ids.shape[0], device=self.device)[to_check][within_range][to_invert]
291
- case_ids.index_put_((idx,), problem_config[to_invert][..., -1])
292
- return case_ids
293
-
294
- @torch.no_grad()
295
- def _identify_surf_edges(self, s_n, cube_fx8, surf_cubes):
296
- """
297
- Identifies grid edges that intersect with the underlying surface by checking for opposite signs. As each edge
298
- can be shared by multiple cubes, this function also assigns a unique index to each surface-intersecting edge
299
- and marks the cube edges with this index.
300
- """
301
- occ_n = s_n < 0
302
- all_edges = cube_fx8[surf_cubes][:, self.cube_edges].reshape(-1, 2)
303
- unique_edges, _idx_map, counts = torch.unique(all_edges, dim=0, return_inverse=True, return_counts=True)
304
-
305
- unique_edges = unique_edges.long()
306
- mask_edges = occ_n[unique_edges.reshape(-1)].reshape(-1, 2).sum(-1) == 1
307
-
308
- surf_edges_mask = mask_edges[_idx_map]
309
- counts = counts[_idx_map]
310
-
311
- mapping = torch.ones((unique_edges.shape[0]), dtype=torch.long, device=cube_fx8.device) * -1
312
- mapping[mask_edges] = torch.arange(mask_edges.sum(), device=cube_fx8.device)
313
- # Shaped as [number of cubes x 12 edges per cube]. This is later used to map a cube edge to the unique index
314
- # for a surface-intersecting edge. Non-surface-intersecting edges are marked with -1.
315
- idx_map = mapping[_idx_map]
316
- surf_edges = unique_edges[mask_edges]
317
- return surf_edges, idx_map, counts, surf_edges_mask
318
-
319
- @torch.no_grad()
320
- def _identify_surf_cubes(self, s_n, cube_fx8):
321
- """
322
- Identifies grid cubes that intersect with the underlying surface by checking if the signs at
323
- all corners are not identical.
324
- """
325
- occ_n = s_n < 0
326
- occ_fx8 = occ_n[cube_fx8.reshape(-1)].reshape(-1, 8)
327
- _occ_sum = torch.sum(occ_fx8, -1)
328
- surf_cubes = (_occ_sum > 0) & (_occ_sum < 8)
329
- return surf_cubes, occ_fx8
330
-
331
- def _linear_interp(self, edges_weight, edges_x):
332
- """
333
- Computes the location of zero-crossings on 'edges_x' using linear interpolation with 'edges_weight'.
334
- """
335
- edge_dim = edges_weight.dim() - 2
336
- assert edges_weight.shape[edge_dim] == 2
337
- edges_weight = torch.cat([torch.index_select(input=edges_weight, index=torch.tensor(1, device=self.device), dim=edge_dim), -
338
- torch.index_select(input=edges_weight, index=torch.tensor(0, device=self.device), dim=edge_dim)], edge_dim)
339
- denominator = edges_weight.sum(edge_dim)
340
- ue = (edges_x * edges_weight).sum(edge_dim) / denominator
341
- return ue
342
-
343
- def _solve_vd_QEF(self, p_bxnx3, norm_bxnx3, c_bx3=None):
344
- p_bxnx3 = p_bxnx3.reshape(-1, 7, 3)
345
- norm_bxnx3 = norm_bxnx3.reshape(-1, 7, 3)
346
- c_bx3 = c_bx3.reshape(-1, 3)
347
- A = norm_bxnx3
348
- B = ((p_bxnx3) * norm_bxnx3).sum(-1, keepdims=True)
349
-
350
- A_reg = (torch.eye(3, device=p_bxnx3.device) * self.qef_reg_scale).unsqueeze(0).repeat(p_bxnx3.shape[0], 1, 1)
351
- B_reg = (self.qef_reg_scale * c_bx3).unsqueeze(-1)
352
- A = torch.cat([A, A_reg], 1)
353
- B = torch.cat([B, B_reg], 1)
354
- dual_verts = torch.linalg.lstsq(A, B).solution.squeeze(-1)
355
- return dual_verts
356
-
357
- def _compute_vd(self, x_nx3, surf_cubes_fx8, surf_edges, s_n, case_ids, beta_fx12, alpha_fx8, gamma_f, idx_map, grad_func):
358
- """
359
- Computes the location of dual vertices as described in Section 4.2
360
- """
361
- alpha_nx12x2 = torch.index_select(input=alpha_fx8, index=self.cube_edges, dim=1).reshape(-1, 12, 2)
362
- surf_edges_x = torch.index_select(input=x_nx3, index=surf_edges.reshape(-1), dim=0).reshape(-1, 2, 3)
363
- surf_edges_s = torch.index_select(input=s_n, index=surf_edges.reshape(-1), dim=0).reshape(-1, 2, 1)
364
- zero_crossing = self._linear_interp(surf_edges_s, surf_edges_x)
365
-
366
- idx_map = idx_map.reshape(-1, 12)
367
- num_vd = torch.index_select(input=self.num_vd_table, index=case_ids, dim=0)
368
- edge_group, edge_group_to_vd, edge_group_to_cube, vd_num_edges, vd_gamma = [], [], [], [], []
369
-
370
- total_num_vd = 0
371
- vd_idx_map = torch.zeros((case_ids.shape[0], 12), dtype=torch.long, device=self.device, requires_grad=False)
372
- if grad_func is not None:
373
- normals = torch.nn.functional.normalize(grad_func(zero_crossing), dim=-1)
374
- vd = []
375
- for num in torch.unique(num_vd):
376
- cur_cubes = (num_vd == num) # consider cubes with the same numbers of vd emitted (for batching)
377
- curr_num_vd = cur_cubes.sum() * num
378
- curr_edge_group = self.dmc_table[case_ids[cur_cubes], :num].reshape(-1, num * 7)
379
- curr_edge_group_to_vd = torch.arange(
380
- curr_num_vd, device=self.device).unsqueeze(-1).repeat(1, 7) + total_num_vd
381
- total_num_vd += curr_num_vd
382
- curr_edge_group_to_cube = torch.arange(idx_map.shape[0], device=self.device)[
383
- cur_cubes].unsqueeze(-1).repeat(1, num * 7).reshape_as(curr_edge_group)
384
-
385
- curr_mask = (curr_edge_group != -1)
386
- edge_group.append(torch.masked_select(curr_edge_group, curr_mask))
387
- edge_group_to_vd.append(torch.masked_select(curr_edge_group_to_vd.reshape_as(curr_edge_group), curr_mask))
388
- edge_group_to_cube.append(torch.masked_select(curr_edge_group_to_cube, curr_mask))
389
- vd_num_edges.append(curr_mask.reshape(-1, 7).sum(-1, keepdims=True))
390
- vd_gamma.append(torch.masked_select(gamma_f, cur_cubes).unsqueeze(-1).repeat(1, num).reshape(-1))
391
-
392
- if grad_func is not None:
393
- with torch.no_grad():
394
- cube_e_verts_idx = idx_map[cur_cubes]
395
- curr_edge_group[~curr_mask] = 0
396
-
397
- verts_group_idx = torch.gather(input=cube_e_verts_idx, dim=1, index=curr_edge_group)
398
- verts_group_idx[verts_group_idx == -1] = 0
399
- verts_group_pos = torch.index_select(
400
- input=zero_crossing, index=verts_group_idx.reshape(-1), dim=0).reshape(-1, num.item(), 7, 3)
401
- v0 = x_nx3[surf_cubes_fx8[cur_cubes][:, 0]].reshape(-1, 1, 1, 3).repeat(1, num.item(), 1, 1)
402
- curr_mask = curr_mask.reshape(-1, num.item(), 7, 1)
403
- verts_centroid = (verts_group_pos * curr_mask).sum(2) / (curr_mask.sum(2))
404
-
405
- normals_bx7x3 = torch.index_select(input=normals, index=verts_group_idx.reshape(-1), dim=0).reshape(
406
- -1, num.item(), 7,
407
- 3)
408
- curr_mask = curr_mask.squeeze(2)
409
- vd.append(self._solve_vd_QEF((verts_group_pos - v0) * curr_mask, normals_bx7x3 * curr_mask,
410
- verts_centroid - v0.squeeze(2)) + v0.reshape(-1, 3))
411
- edge_group = torch.cat(edge_group)
412
- edge_group_to_vd = torch.cat(edge_group_to_vd)
413
- edge_group_to_cube = torch.cat(edge_group_to_cube)
414
- vd_num_edges = torch.cat(vd_num_edges)
415
- vd_gamma = torch.cat(vd_gamma)
416
-
417
- if grad_func is not None:
418
- vd = torch.cat(vd)
419
- L_dev = torch.zeros([1], device=self.device)
420
- else:
421
- vd = torch.zeros((total_num_vd, 3), device=self.device)
422
- beta_sum = torch.zeros((total_num_vd, 1), device=self.device)
423
-
424
- idx_group = torch.gather(input=idx_map.reshape(-1), dim=0, index=edge_group_to_cube * 12 + edge_group)
425
-
426
- x_group = torch.index_select(input=surf_edges_x, index=idx_group.reshape(-1), dim=0).reshape(-1, 2, 3)
427
- s_group = torch.index_select(input=surf_edges_s, index=idx_group.reshape(-1), dim=0).reshape(-1, 2, 1)
428
-
429
- zero_crossing_group = torch.index_select(
430
- input=zero_crossing, index=idx_group.reshape(-1), dim=0).reshape(-1, 3)
431
-
432
- alpha_group = torch.index_select(input=alpha_nx12x2.reshape(-1, 2), dim=0,
433
- index=edge_group_to_cube * 12 + edge_group).reshape(-1, 2, 1)
434
- ue_group = self._linear_interp(s_group * alpha_group, x_group)
435
-
436
- beta_group = torch.gather(input=beta_fx12.reshape(-1), dim=0,
437
- index=edge_group_to_cube * 12 + edge_group).reshape(-1, 1)
438
- beta_sum = beta_sum.index_add_(0, index=edge_group_to_vd, source=beta_group)
439
- vd = vd.index_add_(0, index=edge_group_to_vd, source=ue_group * beta_group) / beta_sum
440
- L_dev = self._compute_reg_loss(vd, zero_crossing_group, edge_group_to_vd, vd_num_edges)
441
-
442
- v_idx = torch.arange(vd.shape[0], device=self.device) # + total_num_vd
443
-
444
- vd_idx_map = (vd_idx_map.reshape(-1)).scatter(dim=0, index=edge_group_to_cube *
445
- 12 + edge_group, src=v_idx[edge_group_to_vd])
446
-
447
- return vd, L_dev, vd_gamma, vd_idx_map
448
-
449
- def _triangulate(self, s_n, surf_edges, vd, vd_gamma, edge_counts, idx_map, vd_idx_map, surf_edges_mask, training, grad_func):
450
- """
451
- Connects four neighboring dual vertices to form a quadrilateral. The quadrilaterals are then split into
452
- triangles based on the gamma parameter, as described in Section 4.3.
453
- """
454
- with torch.no_grad():
455
- group_mask = (edge_counts == 4) & surf_edges_mask # surface edges shared by 4 cubes.
456
- group = idx_map.reshape(-1)[group_mask]
457
- vd_idx = vd_idx_map[group_mask]
458
- edge_indices, indices = torch.sort(group, stable=True)
459
- quad_vd_idx = vd_idx[indices].reshape(-1, 4)
460
-
461
- # Ensure all face directions point towards the positive SDF to maintain consistent winding.
462
- s_edges = s_n[surf_edges[edge_indices.reshape(-1, 4)[:, 0]].reshape(-1)].reshape(-1, 2)
463
- flip_mask = s_edges[:, 0] > 0
464
- quad_vd_idx = torch.cat((quad_vd_idx[flip_mask][:, [0, 1, 3, 2]],
465
- quad_vd_idx[~flip_mask][:, [2, 3, 1, 0]]))
466
- if grad_func is not None:
467
- # when grad_func is given, split quadrilaterals along the diagonals with more consistent gradients.
468
- with torch.no_grad():
469
- vd_gamma = torch.nn.functional.normalize(grad_func(vd), dim=-1)
470
- quad_gamma = torch.index_select(input=vd_gamma, index=quad_vd_idx.reshape(-1), dim=0).reshape(-1, 4, 3)
471
- gamma_02 = (quad_gamma[:, 0] * quad_gamma[:, 2]).sum(-1, keepdims=True)
472
- gamma_13 = (quad_gamma[:, 1] * quad_gamma[:, 3]).sum(-1, keepdims=True)
473
- else:
474
- quad_gamma = torch.index_select(input=vd_gamma, index=quad_vd_idx.reshape(-1), dim=0).reshape(-1, 4)
475
- gamma_02 = torch.index_select(input=quad_gamma, index=torch.tensor(
476
- 0, device=self.device), dim=1) * torch.index_select(input=quad_gamma, index=torch.tensor(2, device=self.device), dim=1)
477
- gamma_13 = torch.index_select(input=quad_gamma, index=torch.tensor(
478
- 1, device=self.device), dim=1) * torch.index_select(input=quad_gamma, index=torch.tensor(3, device=self.device), dim=1)
479
- if not training:
480
- mask = (gamma_02 > gamma_13).squeeze(1)
481
- faces = torch.zeros((quad_gamma.shape[0], 6), dtype=torch.long, device=quad_vd_idx.device)
482
- faces[mask] = quad_vd_idx[mask][:, self.quad_split_1]
483
- faces[~mask] = quad_vd_idx[~mask][:, self.quad_split_2]
484
- faces = faces.reshape(-1, 3)
485
- else:
486
- vd_quad = torch.index_select(input=vd, index=quad_vd_idx.reshape(-1), dim=0).reshape(-1, 4, 3)
487
- vd_02 = (torch.index_select(input=vd_quad, index=torch.tensor(0, device=self.device), dim=1) +
488
- torch.index_select(input=vd_quad, index=torch.tensor(2, device=self.device), dim=1)) / 2
489
- vd_13 = (torch.index_select(input=vd_quad, index=torch.tensor(1, device=self.device), dim=1) +
490
- torch.index_select(input=vd_quad, index=torch.tensor(3, device=self.device), dim=1)) / 2
491
- weight_sum = (gamma_02 + gamma_13) + 1e-8
492
- vd_center = ((vd_02 * gamma_02.unsqueeze(-1) + vd_13 * gamma_13.unsqueeze(-1)) /
493
- weight_sum.unsqueeze(-1)).squeeze(1)
494
- vd_center_idx = torch.arange(vd_center.shape[0], device=self.device) + vd.shape[0]
495
- vd = torch.cat([vd, vd_center])
496
- faces = quad_vd_idx[:, self.quad_split_train].reshape(-1, 4, 2)
497
- faces = torch.cat([faces, vd_center_idx.reshape(-1, 1, 1).repeat(1, 4, 1)], -1).reshape(-1, 3)
498
- return vd, faces, s_edges, edge_indices
499
-
500
- def _tetrahedralize(
501
- self, x_nx3, s_n, cube_fx8, vertices, faces, surf_edges, s_edges, vd_idx_map, case_ids, edge_indices,
502
- surf_cubes, training):
503
- """
504
- Tetrahedralizes the interior volume to produce a tetrahedral mesh, as described in Section 4.5.
505
- """
506
- occ_n = s_n < 0
507
- occ_fx8 = occ_n[cube_fx8.reshape(-1)].reshape(-1, 8)
508
- occ_sum = torch.sum(occ_fx8, -1)
509
-
510
- inside_verts = x_nx3[occ_n]
511
- mapping_inside_verts = torch.ones((occ_n.shape[0]), dtype=torch.long, device=self.device) * -1
512
- mapping_inside_verts[occ_n] = torch.arange(occ_n.sum(), device=self.device) + vertices.shape[0]
513
- """
514
- For each grid edge connecting two grid vertices with different
515
- signs, we first form a four-sided pyramid by connecting one
516
- of the grid vertices with four mesh vertices that correspond
517
- to the grid edge and then subdivide the pyramid into two tetrahedra
518
- """
519
- inside_verts_idx = mapping_inside_verts[surf_edges[edge_indices.reshape(-1, 4)[:, 0]].reshape(-1, 2)[
520
- s_edges < 0]]
521
- if not training:
522
- inside_verts_idx = inside_verts_idx.unsqueeze(1).expand(-1, 2).reshape(-1)
523
- else:
524
- inside_verts_idx = inside_verts_idx.unsqueeze(1).expand(-1, 4).reshape(-1)
525
-
526
- tets_surface = torch.cat([faces, inside_verts_idx.unsqueeze(-1)], -1)
527
- """
528
- For each grid edge connecting two grid vertices with the
529
- same sign, the tetrahedron is formed by the two grid vertices
530
- and two vertices in consecutive adjacent cells
531
- """
532
- inside_cubes = (occ_sum == 8)
533
- inside_cubes_center = x_nx3[cube_fx8[inside_cubes].reshape(-1)].reshape(-1, 8, 3).mean(1)
534
- inside_cubes_center_idx = torch.arange(
535
- inside_cubes_center.shape[0], device=inside_cubes.device) + vertices.shape[0] + inside_verts.shape[0]
536
-
537
- surface_n_inside_cubes = surf_cubes | inside_cubes
538
- edge_center_vertex_idx = torch.ones(((surface_n_inside_cubes).sum(), 13),
539
- dtype=torch.long, device=x_nx3.device) * -1
540
- surf_cubes = surf_cubes[surface_n_inside_cubes]
541
- inside_cubes = inside_cubes[surface_n_inside_cubes]
542
- edge_center_vertex_idx[surf_cubes, :12] = vd_idx_map.reshape(-1, 12)
543
- edge_center_vertex_idx[inside_cubes, 12] = inside_cubes_center_idx
544
-
545
- all_edges = cube_fx8[surface_n_inside_cubes][:, self.cube_edges].reshape(-1, 2)
546
- unique_edges, _idx_map, counts = torch.unique(all_edges, dim=0, return_inverse=True, return_counts=True)
547
- unique_edges = unique_edges.long()
548
- mask_edges = occ_n[unique_edges.reshape(-1)].reshape(-1, 2).sum(-1) == 2
549
- mask = mask_edges[_idx_map]
550
- counts = counts[_idx_map]
551
- mapping = torch.ones((unique_edges.shape[0]), dtype=torch.long, device=self.device) * -1
552
- mapping[mask_edges] = torch.arange(mask_edges.sum(), device=self.device)
553
- idx_map = mapping[_idx_map]
554
-
555
- group_mask = (counts == 4) & mask
556
- group = idx_map.reshape(-1)[group_mask]
557
- edge_indices, indices = torch.sort(group)
558
- cube_idx = torch.arange((_idx_map.shape[0] // 12), dtype=torch.long,
559
- device=self.device).unsqueeze(1).expand(-1, 12).reshape(-1)[group_mask]
560
- edge_idx = torch.arange((12), dtype=torch.long, device=self.device).unsqueeze(
561
- 0).expand(_idx_map.shape[0] // 12, -1).reshape(-1)[group_mask]
562
- # Identify the face shared by the adjacent cells.
563
- cube_idx_4 = cube_idx[indices].reshape(-1, 4)
564
- edge_dir = self.edge_dir_table[edge_idx[indices]].reshape(-1, 4)[..., 0]
565
- shared_faces_4x2 = self.dir_faces_table[edge_dir].reshape(-1)
566
- cube_idx_4x2 = cube_idx_4[:, self.adj_pairs].reshape(-1)
567
- # Identify an edge of the face with different signs and
568
- # select the mesh vertex corresponding to the identified edge.
569
- case_ids_expand = torch.ones((surface_n_inside_cubes).sum(), dtype=torch.long, device=x_nx3.device) * 255
570
- case_ids_expand[surf_cubes] = case_ids
571
- cases = case_ids_expand[cube_idx_4x2]
572
- quad_edge = edge_center_vertex_idx[cube_idx_4x2, self.tet_table[cases, shared_faces_4x2]].reshape(-1, 2)
573
- mask = (quad_edge == -1).sum(-1) == 0
574
- inside_edge = mapping_inside_verts[unique_edges[mask_edges][edge_indices].reshape(-1)].reshape(-1, 2)
575
- tets_inside = torch.cat([quad_edge, inside_edge], -1)[mask]
576
-
577
- tets = torch.cat([tets_surface, tets_inside])
578
- vertices = torch.cat([vertices, inside_verts, inside_cubes_center])
579
- return vertices, tets
 
1
+ # Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
2
+ #
3
+ # NVIDIA CORPORATION & AFFILIATES and its licensors retain all intellectual property
4
+ # and proprietary rights in and to this software, related documentation
5
+ # and any modifications thereto. Any use, reproduction, disclosure or
6
+ # distribution of this software and related documentation without an express
7
+ # license agreement from NVIDIA CORPORATION & AFFILIATES is strictly prohibited.
8
+ import torch
9
+ from util.tables import *
10
+
11
+ __all__ = [
12
+ 'FlexiCubes'
13
+ ]
14
+
15
+
16
+ class FlexiCubes:
17
+ """
18
+ This class implements the FlexiCubes method for extracting meshes from scalar fields.
19
+ It maintains a series of lookup tables and indices to support the mesh extraction process.
20
+ FlexiCubes, a differentiable variant of the Dual Marching Cubes (DMC) scheme, enhances
21
+ the geometric fidelity and mesh quality of reconstructed meshes by dynamically adjusting
22
+ the surface representation through gradient-based optimization.
23
+
24
+ During instantiation, the class loads DMC tables from a file and transforms them into
25
+ PyTorch tensors on the specified device.
26
+
27
+ Attributes:
28
+ device (str): Specifies the computational device (default is "cuda").
29
+ dmc_table (torch.Tensor): Dual Marching Cubes (DMC) table that encodes the edges
30
+ associated with each dual vertex in 256 Marching Cubes (MC) configurations.
31
+ num_vd_table (torch.Tensor): Table holding the number of dual vertices in each of
32
+ the 256 MC configurations.
33
+ check_table (torch.Tensor): Table resolving ambiguity in cases C16 and C19
34
+ of the DMC configurations.
35
+ tet_table (torch.Tensor): Lookup table used in tetrahedralizing the isosurface.
36
+ quad_split_1 (torch.Tensor): Indices for splitting a quad into two triangles
37
+ along one diagonal.
38
+ quad_split_2 (torch.Tensor): Alternative indices for splitting a quad into
39
+ two triangles along the other diagonal.
40
+ quad_split_train (torch.Tensor): Indices for splitting a quad into four triangles
41
+ during training by connecting all edges to their midpoints.
42
+ cube_corners (torch.Tensor): Defines the positions of a standard unit cube's
43
+ eight corners in 3D space, ordered starting from the origin (0,0,0),
44
+ moving along the x-axis, then y-axis, and finally z-axis.
45
+ Used as a blueprint for generating a voxel grid.
46
+ cube_corners_idx (torch.Tensor): Cube corners indexed as powers of 2, used
47
+ to retrieve the case id.
48
+ cube_edges (torch.Tensor): Edge connections in a cube, listed in pairs.
49
+ Used to retrieve edge vertices in DMC.
50
+ edge_dir_table (torch.Tensor): A mapping tensor that associates edge indices with
51
+ their corresponding axis. For instance, edge_dir_table[0] = 0 indicates that the
52
+ first edge is oriented along the x-axis.
53
+ dir_faces_table (torch.Tensor): A tensor that maps the corresponding axis of shared edges
54
+ across four adjacent cubes to the shared faces of these cubes. For instance,
55
+ dir_faces_table[0] = [5, 4] implies that for four cubes sharing an edge along
56
+ the x-axis, the first and second cubes share faces indexed as 5 and 4, respectively.
57
+ This tensor is only utilized during isosurface tetrahedralization.
58
+ adj_pairs (torch.Tensor):
59
+ A tensor containing index pairs that correspond to neighboring cubes that share the same edge.
60
+ qef_reg_scale (float):
61
+ The scaling factor applied to the regularization loss to prevent issues with singularity
62
+ when solving the QEF. This parameter is only used when a 'grad_func' is specified.
63
+ weight_scale (float):
64
+ The scale of weights in FlexiCubes. Should be between 0 and 1.
65
+ """
66
+
67
+ def __init__(self, device="cuda", qef_reg_scale=1e-3, weight_scale=0.99):
68
+
69
+ self.device = device
70
+ self.dmc_table = torch.tensor(dmc_table, dtype=torch.long, device=device, requires_grad=False)
71
+ self.num_vd_table = torch.tensor(num_vd_table,
72
+ dtype=torch.long, device=device, requires_grad=False)
73
+ self.check_table = torch.tensor(
74
+ check_table,
75
+ dtype=torch.long, device=device, requires_grad=False)
76
+
77
+ self.tet_table = torch.tensor(tet_table, dtype=torch.long, device=device, requires_grad=False)
78
+ self.quad_split_1 = torch.tensor([0, 1, 2, 0, 2, 3], dtype=torch.long, device=device, requires_grad=False)
79
+ self.quad_split_2 = torch.tensor([0, 1, 3, 3, 1, 2], dtype=torch.long, device=device, requires_grad=False)
80
+ self.quad_split_train = torch.tensor(
81
+ [0, 1, 1, 2, 2, 3, 3, 0], dtype=torch.long, device=device, requires_grad=False)
82
+
83
+ self.cube_corners = torch.tensor([[0, 0, 0], [1, 0, 0], [0, 1, 0], [1, 1, 0], [0, 0, 1], [
84
+ 1, 0, 1], [0, 1, 1], [1, 1, 1]], dtype=torch.float, device=device)
85
+ self.cube_corners_idx = torch.pow(2, torch.arange(8, requires_grad=False))
86
+ self.cube_edges = torch.tensor([0, 1, 1, 5, 4, 5, 0, 4, 2, 3, 3, 7, 6, 7, 2, 6,
87
+ 2, 0, 3, 1, 7, 5, 6, 4], dtype=torch.long, device=device, requires_grad=False)
88
+
89
+ self.edge_dir_table = torch.tensor([0, 2, 0, 2, 0, 2, 0, 2, 1, 1, 1, 1],
90
+ dtype=torch.long, device=device)
91
+ self.dir_faces_table = torch.tensor([
92
+ [[5, 4], [3, 2], [4, 5], [2, 3]],
93
+ [[5, 4], [1, 0], [4, 5], [0, 1]],
94
+ [[3, 2], [1, 0], [2, 3], [0, 1]]
95
+ ], dtype=torch.long, device=device)
96
+ self.adj_pairs = torch.tensor([0, 1, 1, 3, 3, 2, 2, 0], dtype=torch.long, device=device)
97
+ self.qef_reg_scale = qef_reg_scale
98
+ self.weight_scale = weight_scale
99
+
100
+ def construct_voxel_grid(self, res):
101
+ """
102
+ Generates a voxel grid based on the specified resolution.
103
+
104
+ Args:
105
+ res (int or list[int]): The resolution of the voxel grid. If an integer
106
+ is provided, it is used for all three dimensions. If a list or tuple
107
+ of 3 integers is provided, they define the resolution for the x,
108
+ y, and z dimensions respectively.
109
+
110
+ Returns:
111
+ (torch.Tensor, torch.Tensor): Returns the vertices and the indices of the
112
+ cube corners (index into vertices) of the constructed voxel grid.
113
+ The vertices are centered at the origin, with the length of each
114
+ dimension in the grid being one.
115
+ """
116
+ base_cube_f = torch.arange(8).to(self.device)
117
+ if isinstance(res, int):
118
+ res = (res, res, res)
119
+ voxel_grid_template = torch.ones(res, device=self.device)
120
+
121
+ res = torch.tensor([res], dtype=torch.float, device=self.device)
122
+ coords = torch.nonzero(voxel_grid_template).float() / res # N, 3
123
+ verts = (self.cube_corners.unsqueeze(0) / res + coords.unsqueeze(1)).reshape(-1, 3)
124
+ cubes = (base_cube_f.unsqueeze(0) +
125
+ torch.arange(coords.shape[0], device=self.device).unsqueeze(1) * 8).reshape(-1)
126
+
127
+ verts_rounded = torch.round(verts * 10**5) / (10**5)
128
+ verts_unique, inverse_indices = torch.unique(verts_rounded, dim=0, return_inverse=True)
129
+ cubes = inverse_indices[cubes.reshape(-1)].reshape(-1, 8)
130
+
131
+ return verts_unique - 0.5, cubes
132
+
133
+ def __call__(self, x_nx3, s_n, cube_fx8, res, beta_fx12=None, alpha_fx8=None,
134
+ gamma_f=None, training=False, output_tetmesh=False, grad_func=None):
135
+ r"""
136
+ Main function for mesh extraction from scalar field using FlexiCubes. This function converts
137
+ discrete signed distance fields, encoded on voxel grids and additional per-cube parameters,
138
+ to triangle or tetrahedral meshes using a differentiable operation as described in
139
+ `Flexible Isosurface Extraction for Gradient-Based Mesh Optimization`_. FlexiCubes enhances
140
+ mesh quality and geometric fidelity by adjusting the surface representation based on gradient
141
+ optimization. The output surface is differentiable with respect to the input vertex positions,
142
+ scalar field values, and weight parameters.
143
+
144
+ If you intend to extract a surface mesh from a fixed Signed Distance Field without the
145
+ optimization of parameters, it is suggested to provide the "grad_func" which should
146
+ return the surface gradient at any given 3D position. When grad_func is provided, the process
147
+ to determine the dual vertex position adapts to solve a Quadratic Error Function (QEF), as
148
+ described in the `Manifold Dual Contouring`_ paper, and employs an smart splitting strategy.
149
+ Please note, this approach is non-differentiable.
150
+
151
+ For more details and example usage in optimization, refer to the
152
+ `Flexible Isosurface Extraction for Gradient-Based Mesh Optimization`_ SIGGRAPH 2023 paper.
153
+
154
+ Args:
155
+ x_nx3 (torch.Tensor): Coordinates of the voxel grid vertices, can be deformed.
156
+ s_n (torch.Tensor): Scalar field values at each vertex of the voxel grid. Negative values
157
+ denote that the corresponding vertex resides inside the isosurface. This affects
158
+ the directions of the extracted triangle faces and volume to be tetrahedralized.
159
+ cube_fx8 (torch.Tensor): Indices of 8 vertices for each cube in the voxel grid.
160
+ res (int or list[int]): The resolution of the voxel grid. If an integer is provided, it
161
+ is used for all three dimensions. If a list or tuple of 3 integers is provided, they
162
+ specify the resolution for the x, y, and z dimensions respectively.
163
+ beta_fx12 (torch.Tensor, optional): Weight parameters for the cube edges to adjust dual
164
+ vertices positioning. Defaults to uniform value for all edges.
165
+ alpha_fx8 (torch.Tensor, optional): Weight parameters for the cube corners to adjust dual
166
+ vertices positioning. Defaults to uniform value for all vertices.
167
+ gamma_f (torch.Tensor, optional): Weight parameters to control the splitting of
168
+ quadrilaterals into triangles. Defaults to uniform value for all cubes.
169
+ training (bool, optional): If set to True, applies differentiable quad splitting for
170
+ training. Defaults to False.
171
+ output_tetmesh (bool, optional): If set to True, outputs a tetrahedral mesh, otherwise,
172
+ outputs a triangular mesh. Defaults to False.
173
+ grad_func (callable, optional): A function to compute the surface gradient at specified
174
+ 3D positions (input: Nx3 positions). The function should return gradients as an Nx3
175
+ tensor. If None, the original FlexiCubes algorithm is utilized. Defaults to None.
176
+
177
+ Returns:
178
+ (torch.Tensor, torch.LongTensor, torch.Tensor): Tuple containing:
179
+ - Vertices for the extracted triangular/tetrahedral mesh.
180
+ - Faces for the extracted triangular/tetrahedral mesh.
181
+ - Regularizer L_dev, computed per dual vertex.
182
+
183
+ .. _Flexible Isosurface Extraction for Gradient-Based Mesh Optimization:
184
+ https://research.nvidia.com/labs/toronto-ai/flexicubes/
185
+ .. _Manifold Dual Contouring:
186
+ https://people.engr.tamu.edu/schaefer/research/dualsimp_tvcg.pdf
187
+ """
188
+
189
+ surf_cubes, occ_fx8 = self._identify_surf_cubes(s_n, cube_fx8)
190
+ if surf_cubes.sum() == 0:
191
+ return torch.zeros(
192
+ (0, 3),
193
+ device=self.device), torch.zeros(
194
+ (0, 4),
195
+ dtype=torch.long, device=self.device) if output_tetmesh else torch.zeros(
196
+ (0, 3),
197
+ dtype=torch.long, device=self.device), torch.zeros(
198
+ (0),
199
+ device=self.device)
200
+ beta_fx12, alpha_fx8, gamma_f = self._normalize_weights(beta_fx12, alpha_fx8, gamma_f, surf_cubes)
201
+
202
+ case_ids = self._get_case_id(occ_fx8, surf_cubes, res)
203
+
204
+ surf_edges, idx_map, edge_counts, surf_edges_mask = self._identify_surf_edges(s_n, cube_fx8, surf_cubes)
205
+
206
+ vd, L_dev, vd_gamma, vd_idx_map = self._compute_vd(
207
+ x_nx3, cube_fx8[surf_cubes], surf_edges, s_n, case_ids, beta_fx12, alpha_fx8, gamma_f, idx_map, grad_func)
208
+ vertices, faces, s_edges, edge_indices = self._triangulate(
209
+ s_n, surf_edges, vd, vd_gamma, edge_counts, idx_map, vd_idx_map, surf_edges_mask, training, grad_func)
210
+ if not output_tetmesh:
211
+ return vertices, faces, L_dev
212
+ else:
213
+ vertices, tets = self._tetrahedralize(
214
+ x_nx3, s_n, cube_fx8, vertices, faces, surf_edges, s_edges, vd_idx_map, case_ids, edge_indices,
215
+ surf_cubes, training)
216
+ return vertices, tets, L_dev
217
+
218
+ def _compute_reg_loss(self, vd, ue, edge_group_to_vd, vd_num_edges):
219
+ """
220
+ Regularizer L_dev as in Equation 8
221
+ """
222
+ dist = torch.norm(ue - torch.index_select(input=vd, index=edge_group_to_vd, dim=0), dim=-1)
223
+ mean_l2 = torch.zeros_like(vd[:, 0])
224
+ mean_l2 = (mean_l2).index_add_(0, edge_group_to_vd, dist) / vd_num_edges.squeeze(1).float()
225
+ mad = (dist - torch.index_select(input=mean_l2, index=edge_group_to_vd, dim=0)).abs()
226
+ return mad
227
+
228
+ def _normalize_weights(self, beta_fx12, alpha_fx8, gamma_f, surf_cubes):
229
+ """
230
+ Normalizes the given weights to be non-negative. If input weights are None, it creates and returns a set of weights of ones.
231
+ """
232
+ n_cubes = surf_cubes.shape[0]
233
+
234
+ if beta_fx12 is not None:
235
+ beta_fx12 = (torch.tanh(beta_fx12) * self.weight_scale + 1)
236
+ else:
237
+ beta_fx12 = torch.ones((n_cubes, 12), dtype=torch.float, device=self.device)
238
+
239
+ if alpha_fx8 is not None:
240
+ alpha_fx8 = (torch.tanh(alpha_fx8) * self.weight_scale + 1)
241
+ else:
242
+ alpha_fx8 = torch.ones((n_cubes, 8), dtype=torch.float, device=self.device)
243
+
244
+ if gamma_f is not None:
245
+ gamma_f = torch.sigmoid(gamma_f) * self.weight_scale + (1 - self.weight_scale)/2
246
+ else:
247
+ gamma_f = torch.ones((n_cubes), dtype=torch.float, device=self.device)
248
+
249
+ return beta_fx12[surf_cubes], alpha_fx8[surf_cubes], gamma_f[surf_cubes]
250
+
251
+ @torch.no_grad()
252
+ def _get_case_id(self, occ_fx8, surf_cubes, res):
253
+ """
254
+ Obtains the ID of topology cases based on cell corner occupancy. This function resolves the
255
+ ambiguity in the Dual Marching Cubes (DMC) configurations as described in Section 1.3 of the
256
+ supplementary material. It should be noted that this function assumes a regular grid.
257
+ """
258
+ case_ids = (occ_fx8[surf_cubes] * self.cube_corners_idx.to(self.device).unsqueeze(0)).sum(-1)
259
+
260
+ problem_config = self.check_table.to(self.device)[case_ids]
261
+ to_check = problem_config[..., 0] == 1
262
+ problem_config = problem_config[to_check]
263
+ if not isinstance(res, (list, tuple)):
264
+ res = [res, res, res]
265
+
266
+ # The 'problematic_configs' only contain configurations for surface cubes. Next, we construct a 3D array,
267
+ # 'problem_config_full', to store configurations for all cubes (with default config for non-surface cubes).
268
+ # This allows efficient checking on adjacent cubes.
269
+ problem_config_full = torch.zeros(list(res) + [5], device=self.device, dtype=torch.long)
270
+ vol_idx = torch.nonzero(problem_config_full[..., 0] == 0) # N, 3
271
+ vol_idx_problem = vol_idx[surf_cubes][to_check]
272
+ problem_config_full[vol_idx_problem[..., 0], vol_idx_problem[..., 1], vol_idx_problem[..., 2]] = problem_config
273
+ vol_idx_problem_adj = vol_idx_problem + problem_config[..., 1:4]
274
+
275
+ within_range = (
276
+ vol_idx_problem_adj[..., 0] >= 0) & (
277
+ vol_idx_problem_adj[..., 0] < res[0]) & (
278
+ vol_idx_problem_adj[..., 1] >= 0) & (
279
+ vol_idx_problem_adj[..., 1] < res[1]) & (
280
+ vol_idx_problem_adj[..., 2] >= 0) & (
281
+ vol_idx_problem_adj[..., 2] < res[2])
282
+
283
+ vol_idx_problem = vol_idx_problem[within_range]
284
+ vol_idx_problem_adj = vol_idx_problem_adj[within_range]
285
+ problem_config = problem_config[within_range]
286
+ problem_config_adj = problem_config_full[vol_idx_problem_adj[..., 0],
287
+ vol_idx_problem_adj[..., 1], vol_idx_problem_adj[..., 2]]
288
+ # If two cubes with cases C16 and C19 share an ambiguous face, both cases are inverted.
289
+ to_invert = (problem_config_adj[..., 0] == 1)
290
+ idx = torch.arange(case_ids.shape[0], device=self.device)[to_check][within_range][to_invert]
291
+ case_ids.index_put_((idx,), problem_config[to_invert][..., -1])
292
+ return case_ids
293
+
294
+ @torch.no_grad()
295
+ def _identify_surf_edges(self, s_n, cube_fx8, surf_cubes):
296
+ """
297
+ Identifies grid edges that intersect with the underlying surface by checking for opposite signs. As each edge
298
+ can be shared by multiple cubes, this function also assigns a unique index to each surface-intersecting edge
299
+ and marks the cube edges with this index.
300
+ """
301
+ occ_n = s_n < 0
302
+ all_edges = cube_fx8[surf_cubes][:, self.cube_edges].reshape(-1, 2)
303
+ unique_edges, _idx_map, counts = torch.unique(all_edges, dim=0, return_inverse=True, return_counts=True)
304
+
305
+ unique_edges = unique_edges.long()
306
+ mask_edges = occ_n[unique_edges.reshape(-1)].reshape(-1, 2).sum(-1) == 1
307
+
308
+ surf_edges_mask = mask_edges[_idx_map]
309
+ counts = counts[_idx_map]
310
+
311
+ mapping = torch.ones((unique_edges.shape[0]), dtype=torch.long, device=cube_fx8.device) * -1
312
+ mapping[mask_edges] = torch.arange(mask_edges.sum(), device=cube_fx8.device)
313
+ # Shaped as [number of cubes x 12 edges per cube]. This is later used to map a cube edge to the unique index
314
+ # for a surface-intersecting edge. Non-surface-intersecting edges are marked with -1.
315
+ idx_map = mapping[_idx_map]
316
+ surf_edges = unique_edges[mask_edges]
317
+ return surf_edges, idx_map, counts, surf_edges_mask
318
+
319
+ @torch.no_grad()
320
+ def _identify_surf_cubes(self, s_n, cube_fx8):
321
+ """
322
+ Identifies grid cubes that intersect with the underlying surface by checking if the signs at
323
+ all corners are not identical.
324
+ """
325
+ occ_n = s_n < 0
326
+ occ_fx8 = occ_n[cube_fx8.reshape(-1)].reshape(-1, 8)
327
+ _occ_sum = torch.sum(occ_fx8, -1)
328
+ surf_cubes = (_occ_sum > 0) & (_occ_sum < 8)
329
+ return surf_cubes, occ_fx8
330
+
331
+ def _linear_interp(self, edges_weight, edges_x):
332
+ """
333
+ Computes the location of zero-crossings on 'edges_x' using linear interpolation with 'edges_weight'.
334
+ """
335
+ edge_dim = edges_weight.dim() - 2
336
+ assert edges_weight.shape[edge_dim] == 2
337
+ edges_weight = torch.cat([torch.index_select(input=edges_weight, index=torch.tensor(1, device=self.device), dim=edge_dim), -
338
+ torch.index_select(input=edges_weight, index=torch.tensor(0, device=self.device), dim=edge_dim)], edge_dim)
339
+ denominator = edges_weight.sum(edge_dim)
340
+ ue = (edges_x * edges_weight).sum(edge_dim) / denominator
341
+ return ue
342
+
343
+ def _solve_vd_QEF(self, p_bxnx3, norm_bxnx3, c_bx3=None):
344
+ p_bxnx3 = p_bxnx3.reshape(-1, 7, 3)
345
+ norm_bxnx3 = norm_bxnx3.reshape(-1, 7, 3)
346
+ c_bx3 = c_bx3.reshape(-1, 3)
347
+ A = norm_bxnx3
348
+ B = ((p_bxnx3) * norm_bxnx3).sum(-1, keepdims=True)
349
+
350
+ A_reg = (torch.eye(3, device=p_bxnx3.device) * self.qef_reg_scale).unsqueeze(0).repeat(p_bxnx3.shape[0], 1, 1)
351
+ B_reg = (self.qef_reg_scale * c_bx3).unsqueeze(-1)
352
+ A = torch.cat([A, A_reg], 1)
353
+ B = torch.cat([B, B_reg], 1)
354
+ dual_verts = torch.linalg.lstsq(A, B).solution.squeeze(-1)
355
+ return dual_verts
356
+
357
+ def _compute_vd(self, x_nx3, surf_cubes_fx8, surf_edges, s_n, case_ids, beta_fx12, alpha_fx8, gamma_f, idx_map, grad_func):
358
+ """
359
+ Computes the location of dual vertices as described in Section 4.2
360
+ """
361
+ alpha_nx12x2 = torch.index_select(input=alpha_fx8, index=self.cube_edges, dim=1).reshape(-1, 12, 2)
362
+ surf_edges_x = torch.index_select(input=x_nx3, index=surf_edges.reshape(-1), dim=0).reshape(-1, 2, 3)
363
+ surf_edges_s = torch.index_select(input=s_n, index=surf_edges.reshape(-1), dim=0).reshape(-1, 2, 1)
364
+ zero_crossing = self._linear_interp(surf_edges_s, surf_edges_x)
365
+
366
+ idx_map = idx_map.reshape(-1, 12)
367
+ num_vd = torch.index_select(input=self.num_vd_table, index=case_ids, dim=0)
368
+ edge_group, edge_group_to_vd, edge_group_to_cube, vd_num_edges, vd_gamma = [], [], [], [], []
369
+
370
+ total_num_vd = 0
371
+ vd_idx_map = torch.zeros((case_ids.shape[0], 12), dtype=torch.long, device=self.device, requires_grad=False)
372
+ if grad_func is not None:
373
+ normals = torch.nn.functional.normalize(grad_func(zero_crossing), dim=-1)
374
+ vd = []
375
+ for num in torch.unique(num_vd):
376
+ cur_cubes = (num_vd == num) # consider cubes with the same numbers of vd emitted (for batching)
377
+ curr_num_vd = cur_cubes.sum() * num
378
+ curr_edge_group = self.dmc_table[case_ids[cur_cubes], :num].reshape(-1, num * 7)
379
+ curr_edge_group_to_vd = torch.arange(
380
+ curr_num_vd, device=self.device).unsqueeze(-1).repeat(1, 7) + total_num_vd
381
+ total_num_vd += curr_num_vd
382
+ curr_edge_group_to_cube = torch.arange(idx_map.shape[0], device=self.device)[
383
+ cur_cubes].unsqueeze(-1).repeat(1, num * 7).reshape_as(curr_edge_group)
384
+
385
+ curr_mask = (curr_edge_group != -1)
386
+ edge_group.append(torch.masked_select(curr_edge_group, curr_mask))
387
+ edge_group_to_vd.append(torch.masked_select(curr_edge_group_to_vd.reshape_as(curr_edge_group), curr_mask))
388
+ edge_group_to_cube.append(torch.masked_select(curr_edge_group_to_cube, curr_mask))
389
+ vd_num_edges.append(curr_mask.reshape(-1, 7).sum(-1, keepdims=True))
390
+ vd_gamma.append(torch.masked_select(gamma_f, cur_cubes).unsqueeze(-1).repeat(1, num).reshape(-1))
391
+
392
+ if grad_func is not None:
393
+ with torch.no_grad():
394
+ cube_e_verts_idx = idx_map[cur_cubes]
395
+ curr_edge_group[~curr_mask] = 0
396
+
397
+ verts_group_idx = torch.gather(input=cube_e_verts_idx, dim=1, index=curr_edge_group)
398
+ verts_group_idx[verts_group_idx == -1] = 0
399
+ verts_group_pos = torch.index_select(
400
+ input=zero_crossing, index=verts_group_idx.reshape(-1), dim=0).reshape(-1, num.item(), 7, 3)
401
+ v0 = x_nx3[surf_cubes_fx8[cur_cubes][:, 0]].reshape(-1, 1, 1, 3).repeat(1, num.item(), 1, 1)
402
+ curr_mask = curr_mask.reshape(-1, num.item(), 7, 1)
403
+ verts_centroid = (verts_group_pos * curr_mask).sum(2) / (curr_mask.sum(2))
404
+
405
+ normals_bx7x3 = torch.index_select(input=normals, index=verts_group_idx.reshape(-1), dim=0).reshape(
406
+ -1, num.item(), 7,
407
+ 3)
408
+ curr_mask = curr_mask.squeeze(2)
409
+ vd.append(self._solve_vd_QEF((verts_group_pos - v0) * curr_mask, normals_bx7x3 * curr_mask,
410
+ verts_centroid - v0.squeeze(2)) + v0.reshape(-1, 3))
411
+ edge_group = torch.cat(edge_group)
412
+ edge_group_to_vd = torch.cat(edge_group_to_vd)
413
+ edge_group_to_cube = torch.cat(edge_group_to_cube)
414
+ vd_num_edges = torch.cat(vd_num_edges)
415
+ vd_gamma = torch.cat(vd_gamma)
416
+
417
+ if grad_func is not None:
418
+ vd = torch.cat(vd)
419
+ L_dev = torch.zeros([1], device=self.device)
420
+ else:
421
+ vd = torch.zeros((total_num_vd, 3), device=self.device)
422
+ beta_sum = torch.zeros((total_num_vd, 1), device=self.device)
423
+
424
+ idx_group = torch.gather(input=idx_map.reshape(-1), dim=0, index=edge_group_to_cube * 12 + edge_group)
425
+
426
+ x_group = torch.index_select(input=surf_edges_x, index=idx_group.reshape(-1), dim=0).reshape(-1, 2, 3)
427
+ s_group = torch.index_select(input=surf_edges_s, index=idx_group.reshape(-1), dim=0).reshape(-1, 2, 1)
428
+
429
+ zero_crossing_group = torch.index_select(
430
+ input=zero_crossing, index=idx_group.reshape(-1), dim=0).reshape(-1, 3)
431
+
432
+ alpha_group = torch.index_select(input=alpha_nx12x2.reshape(-1, 2), dim=0,
433
+ index=edge_group_to_cube * 12 + edge_group).reshape(-1, 2, 1)
434
+ ue_group = self._linear_interp(s_group * alpha_group, x_group)
435
+
436
+ beta_group = torch.gather(input=beta_fx12.reshape(-1), dim=0,
437
+ index=edge_group_to_cube * 12 + edge_group).reshape(-1, 1)
438
+ beta_sum = beta_sum.index_add_(0, index=edge_group_to_vd, source=beta_group)
439
+ vd = vd.index_add_(0, index=edge_group_to_vd, source=ue_group * beta_group) / beta_sum
440
+ L_dev = self._compute_reg_loss(vd, zero_crossing_group, edge_group_to_vd, vd_num_edges)
441
+
442
+ v_idx = torch.arange(vd.shape[0], device=self.device) # + total_num_vd
443
+
444
+ vd_idx_map = (vd_idx_map.reshape(-1)).scatter(dim=0, index=edge_group_to_cube *
445
+ 12 + edge_group, src=v_idx[edge_group_to_vd])
446
+
447
+ return vd, L_dev, vd_gamma, vd_idx_map
448
+
449
+ def _triangulate(self, s_n, surf_edges, vd, vd_gamma, edge_counts, idx_map, vd_idx_map, surf_edges_mask, training, grad_func):
450
+ """
451
+ Connects four neighboring dual vertices to form a quadrilateral. The quadrilaterals are then split into
452
+ triangles based on the gamma parameter, as described in Section 4.3.
453
+ """
454
+ with torch.no_grad():
455
+ group_mask = (edge_counts == 4) & surf_edges_mask # surface edges shared by 4 cubes.
456
+ group = idx_map.reshape(-1)[group_mask]
457
+ vd_idx = vd_idx_map[group_mask]
458
+ edge_indices, indices = torch.sort(group, stable=True)
459
+ quad_vd_idx = vd_idx[indices].reshape(-1, 4)
460
+
461
+ # Ensure all face directions point towards the positive SDF to maintain consistent winding.
462
+ s_edges = s_n[surf_edges[edge_indices.reshape(-1, 4)[:, 0]].reshape(-1)].reshape(-1, 2)
463
+ flip_mask = s_edges[:, 0] > 0
464
+ quad_vd_idx = torch.cat((quad_vd_idx[flip_mask][:, [0, 1, 3, 2]],
465
+ quad_vd_idx[~flip_mask][:, [2, 3, 1, 0]]))
466
+ if grad_func is not None:
467
+ # when grad_func is given, split quadrilaterals along the diagonals with more consistent gradients.
468
+ with torch.no_grad():
469
+ vd_gamma = torch.nn.functional.normalize(grad_func(vd), dim=-1)
470
+ quad_gamma = torch.index_select(input=vd_gamma, index=quad_vd_idx.reshape(-1), dim=0).reshape(-1, 4, 3)
471
+ gamma_02 = (quad_gamma[:, 0] * quad_gamma[:, 2]).sum(-1, keepdims=True)
472
+ gamma_13 = (quad_gamma[:, 1] * quad_gamma[:, 3]).sum(-1, keepdims=True)
473
+ else:
474
+ quad_gamma = torch.index_select(input=vd_gamma, index=quad_vd_idx.reshape(-1), dim=0).reshape(-1, 4)
475
+ gamma_02 = torch.index_select(input=quad_gamma, index=torch.tensor(
476
+ 0, device=self.device), dim=1) * torch.index_select(input=quad_gamma, index=torch.tensor(2, device=self.device), dim=1)
477
+ gamma_13 = torch.index_select(input=quad_gamma, index=torch.tensor(
478
+ 1, device=self.device), dim=1) * torch.index_select(input=quad_gamma, index=torch.tensor(3, device=self.device), dim=1)
479
+ if not training:
480
+ mask = (gamma_02 > gamma_13).squeeze(1)
481
+ faces = torch.zeros((quad_gamma.shape[0], 6), dtype=torch.long, device=quad_vd_idx.device)
482
+ faces[mask] = quad_vd_idx[mask][:, self.quad_split_1]
483
+ faces[~mask] = quad_vd_idx[~mask][:, self.quad_split_2]
484
+ faces = faces.reshape(-1, 3)
485
+ else:
486
+ vd_quad = torch.index_select(input=vd, index=quad_vd_idx.reshape(-1), dim=0).reshape(-1, 4, 3)
487
+ vd_02 = (torch.index_select(input=vd_quad, index=torch.tensor(0, device=self.device), dim=1) +
488
+ torch.index_select(input=vd_quad, index=torch.tensor(2, device=self.device), dim=1)) / 2
489
+ vd_13 = (torch.index_select(input=vd_quad, index=torch.tensor(1, device=self.device), dim=1) +
490
+ torch.index_select(input=vd_quad, index=torch.tensor(3, device=self.device), dim=1)) / 2
491
+ weight_sum = (gamma_02 + gamma_13) + 1e-8
492
+ vd_center = ((vd_02 * gamma_02.unsqueeze(-1) + vd_13 * gamma_13.unsqueeze(-1)) /
493
+ weight_sum.unsqueeze(-1)).squeeze(1)
494
+ vd_center_idx = torch.arange(vd_center.shape[0], device=self.device) + vd.shape[0]
495
+ vd = torch.cat([vd, vd_center])
496
+ faces = quad_vd_idx[:, self.quad_split_train].reshape(-1, 4, 2)
497
+ faces = torch.cat([faces, vd_center_idx.reshape(-1, 1, 1).repeat(1, 4, 1)], -1).reshape(-1, 3)
498
+ return vd, faces, s_edges, edge_indices
499
+
500
+ def _tetrahedralize(
501
+ self, x_nx3, s_n, cube_fx8, vertices, faces, surf_edges, s_edges, vd_idx_map, case_ids, edge_indices,
502
+ surf_cubes, training):
503
+ """
504
+ Tetrahedralizes the interior volume to produce a tetrahedral mesh, as described in Section 4.5.
505
+ """
506
+ occ_n = s_n < 0
507
+ occ_fx8 = occ_n[cube_fx8.reshape(-1)].reshape(-1, 8)
508
+ occ_sum = torch.sum(occ_fx8, -1)
509
+
510
+ inside_verts = x_nx3[occ_n]
511
+ mapping_inside_verts = torch.ones((occ_n.shape[0]), dtype=torch.long, device=self.device) * -1
512
+ mapping_inside_verts[occ_n] = torch.arange(occ_n.sum(), device=self.device) + vertices.shape[0]
513
+ """
514
+ For each grid edge connecting two grid vertices with different
515
+ signs, we first form a four-sided pyramid by connecting one
516
+ of the grid vertices with four mesh vertices that correspond
517
+ to the grid edge and then subdivide the pyramid into two tetrahedra
518
+ """
519
+ inside_verts_idx = mapping_inside_verts[surf_edges[edge_indices.reshape(-1, 4)[:, 0]].reshape(-1, 2)[
520
+ s_edges < 0]]
521
+ if not training:
522
+ inside_verts_idx = inside_verts_idx.unsqueeze(1).expand(-1, 2).reshape(-1)
523
+ else:
524
+ inside_verts_idx = inside_verts_idx.unsqueeze(1).expand(-1, 4).reshape(-1)
525
+
526
+ tets_surface = torch.cat([faces, inside_verts_idx.unsqueeze(-1)], -1)
527
+ """
528
+ For each grid edge connecting two grid vertices with the
529
+ same sign, the tetrahedron is formed by the two grid vertices
530
+ and two vertices in consecutive adjacent cells
531
+ """
532
+ inside_cubes = (occ_sum == 8)
533
+ inside_cubes_center = x_nx3[cube_fx8[inside_cubes].reshape(-1)].reshape(-1, 8, 3).mean(1)
534
+ inside_cubes_center_idx = torch.arange(
535
+ inside_cubes_center.shape[0], device=inside_cubes.device) + vertices.shape[0] + inside_verts.shape[0]
536
+
537
+ surface_n_inside_cubes = surf_cubes | inside_cubes
538
+ edge_center_vertex_idx = torch.ones(((surface_n_inside_cubes).sum(), 13),
539
+ dtype=torch.long, device=x_nx3.device) * -1
540
+ surf_cubes = surf_cubes[surface_n_inside_cubes]
541
+ inside_cubes = inside_cubes[surface_n_inside_cubes]
542
+ edge_center_vertex_idx[surf_cubes, :12] = vd_idx_map.reshape(-1, 12)
543
+ edge_center_vertex_idx[inside_cubes, 12] = inside_cubes_center_idx
544
+
545
+ all_edges = cube_fx8[surface_n_inside_cubes][:, self.cube_edges].reshape(-1, 2)
546
+ unique_edges, _idx_map, counts = torch.unique(all_edges, dim=0, return_inverse=True, return_counts=True)
547
+ unique_edges = unique_edges.long()
548
+ mask_edges = occ_n[unique_edges.reshape(-1)].reshape(-1, 2).sum(-1) == 2
549
+ mask = mask_edges[_idx_map]
550
+ counts = counts[_idx_map]
551
+ mapping = torch.ones((unique_edges.shape[0]), dtype=torch.long, device=self.device) * -1
552
+ mapping[mask_edges] = torch.arange(mask_edges.sum(), device=self.device)
553
+ idx_map = mapping[_idx_map]
554
+
555
+ group_mask = (counts == 4) & mask
556
+ group = idx_map.reshape(-1)[group_mask]
557
+ edge_indices, indices = torch.sort(group)
558
+ cube_idx = torch.arange((_idx_map.shape[0] // 12), dtype=torch.long,
559
+ device=self.device).unsqueeze(1).expand(-1, 12).reshape(-1)[group_mask]
560
+ edge_idx = torch.arange((12), dtype=torch.long, device=self.device).unsqueeze(
561
+ 0).expand(_idx_map.shape[0] // 12, -1).reshape(-1)[group_mask]
562
+ # Identify the face shared by the adjacent cells.
563
+ cube_idx_4 = cube_idx[indices].reshape(-1, 4)
564
+ edge_dir = self.edge_dir_table[edge_idx[indices]].reshape(-1, 4)[..., 0]
565
+ shared_faces_4x2 = self.dir_faces_table[edge_dir].reshape(-1)
566
+ cube_idx_4x2 = cube_idx_4[:, self.adj_pairs].reshape(-1)
567
+ # Identify an edge of the face with different signs and
568
+ # select the mesh vertex corresponding to the identified edge.
569
+ case_ids_expand = torch.ones((surface_n_inside_cubes).sum(), dtype=torch.long, device=x_nx3.device) * 255
570
+ case_ids_expand[surf_cubes] = case_ids
571
+ cases = case_ids_expand[cube_idx_4x2]
572
+ quad_edge = edge_center_vertex_idx[cube_idx_4x2, self.tet_table[cases, shared_faces_4x2]].reshape(-1, 2)
573
+ mask = (quad_edge == -1).sum(-1) == 0
574
+ inside_edge = mapping_inside_verts[unique_edges[mask_edges][edge_indices].reshape(-1)].reshape(-1, 2)
575
+ tets_inside = torch.cat([quad_edge, inside_edge], -1)[mask]
576
+
577
+ tets = torch.cat([tets_surface, tets_inside])
578
+ vertices = torch.cat([vertices, inside_verts, inside_cubes_center])
579
+ return vertices, tets