Prompt_Tester / test_runner.py
Marek4321's picture
Update test_runner.py
40e80d0 verified
"""
Test Runner - Logika przeprowadzania testów A/B (wersja Streamlit)
"""
import time
import json
import pandas as pd
from datetime import datetime
from pathlib import Path
from io import BytesIO
from docx import Document
from docx.shared import Pt, RGBColor, Inches
from docx.enum.text import WD_PARAGRAPH_ALIGNMENT
class TestRunner:
"""Zarządza przeprowadzaniem testów A/B promptów"""
def __init__(self, api_handler):
"""
Args:
api_handler: Instancja APIHandler
"""
self.api_handler = api_handler
self.responses = []
self.is_running = False
self.should_cancel = False
def run_test(self, prompt_a, prompt_b, num_responses, model, temperature, max_tokens, progress_callback=None, log_callback=None):
"""
Przeprowadza test A/B
Args:
prompt_a: Treść promptu A (string)
prompt_b: Treść promptu B (string)
num_responses: Liczba odpowiedzi dla każdego promptu
model: Model OpenAI
temperature: Temperatura
max_tokens: Max tokens
progress_callback: Opcjonalna funkcja do aktualizacji progress bara
log_callback: Opcjonalna funkcja do logowania
Returns:
list: Lista słowników z odpowiedziami
"""
self.responses = []
self.is_running = True
self.should_cancel = False
total_iterations = num_responses * 2
current = 0
# Generowanie odpowiedzi dla promptu A
if log_callback:
log_callback(f"🔄 Generowanie odpowiedzi dla PROMPTU A...")
for i in range(num_responses):
if self.should_cancel:
if log_callback:
log_callback("⚠️ Test anulowany przez użytkownika")
self.is_running = False
return []
current += 1
if progress_callback:
progress_callback(current, total_iterations)
response = self.api_handler.generate_response(
prompt_a, model, temperature, max_tokens
)
self.responses.append({
'Option': 'A',
'Response_ID': i + 1,
'Response': response,
'Score': None
})
if log_callback:
if response.startswith("ERROR"):
log_callback(f" A-{i+1}/{num_responses}... ❌ {response}")
else:
log_callback(f" A-{i+1}/{num_responses}... ✅ ({len(response)} znaków)")
time.sleep(0.5) # Krótka pauza między requestami
# Generowanie odpowiedzi dla promptu B
if log_callback:
log_callback(f"\n🔄 Generowanie odpowiedzi dla PROMPTU B...")
for i in range(num_responses):
if self.should_cancel:
if log_callback:
log_callback("⚠️ Test anulowany przez użytkownika")
self.is_running = False
return []
current += 1
if progress_callback:
progress_callback(current, total_iterations)
response = self.api_handler.generate_response(
prompt_b, model, temperature, max_tokens
)
self.responses.append({
'Option': 'B',
'Response_ID': i + 1,
'Response': response,
'Score': None
})
if log_callback:
if response.startswith("ERROR"):
log_callback(f" B-{i+1}/{num_responses}... ❌ {response}")
else:
log_callback(f" B-{i+1}/{num_responses}... ✅ ({len(response)} znaków)")
time.sleep(0.5)
if log_callback:
log_callback(f"\n✅ GENEROWANIE ZAKOŃCZONE - wygenerowano {len(self.responses)} odpowiedzi")
self.is_running = False
return self.responses
def calculate_results(self, responses_with_scores):
"""
Oblicza wyniki testu na podstawie ocen
Args:
responses_with_scores: Lista odpowiedzi z wypełnionymi ocenami
Returns:
dict: Wyniki w formacie {'A': {'count': X, 'score': Y}, 'B': {...}}
"""
results = {}
for option in ['A', 'B']:
option_responses = [r for r in responses_with_scores if r['Option'] == option]
scores = [r['Score'] for r in option_responses if r['Score'] is not None]
if scores:
avg_score = sum(scores) / len(scores)
results[option] = {
'count': len(scores),
'score': round(avg_score, 2),
'min': min(scores),
'max': max(scores)
}
return results
def export_to_csv(self, responses_with_scores, results, settings):
"""
Eksportuje wyniki do CSV (zwraca BytesIO dla Streamlit download)
Args:
responses_with_scores: Lista odpowiedzi z ocenami
results: Wyniki testu
settings: Ustawienia testu
Returns:
BytesIO: Bufor CSV do pobrania
"""
# Przygotuj dane do zapisu
df = pd.DataFrame(responses_with_scores)
# Dodaj metadane jako pierwsze wiersze (jako komentarze)
metadata = [
f"# Test A/B Prompt - {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}",
f"# Model: {settings.get('model', 'N/A')}",
f"# Temperature: {settings.get('temperature', 'N/A')}",
f"# Max Tokens: {settings.get('max_tokens', 'N/A')}",
f"# Top P: {settings.get('top_p', 'N/A')}",
f"# Num Responses: {settings.get('num_responses', 'N/A')}",
f"#",
f"# WYNIKI:",
f"# Option A - Count: {results['A']['count']}, Score: {results['A']['score']}",
f"# Option B - Count: {results['B']['count']}, Score: {results['B']['score']}",
f"#"
]
# Zapisz do bufora
buffer = BytesIO()
# Zapisz metadane
for line in metadata:
buffer.write((line + "\n").encode('utf-8'))
# Zapisz DataFrame
df.to_csv(buffer, index=False, encoding='utf-8')
buffer.seek(0)
return buffer
def cancel_test(self):
"""Anuluje trwający test"""
self.should_cancel = True
def export_to_excel(self, responses_with_scores, results, settings):
"""
Eksportuje wyniki do Excel (zwraca BytesIO dla Streamlit download)
Args:
responses_with_scores: Lista odpowiedzi z ocenami
results: Wyniki testu
settings: Ustawienia testu
Returns:
BytesIO: Bufor Excel do pobrania
"""
buffer = BytesIO()
with pd.ExcelWriter(buffer, engine='openpyxl') as writer:
# Arkusz 1: Podsumowanie
summary_data = {
'Parametr': [
'Data testu',
'Model',
'Temperature',
'Max Tokens',
'Liczba odpowiedzi',
'',
'Option A - Średnia ocena',
'Option A - Liczba',
'Option A - Min',
'Option A - Max',
'',
'Option B - Średnia ocena',
'Option B - Liczba',
'Option B - Min',
'Option B - Max'
],
'Wartość': [
datetime.now().strftime('%Y-%m-%d %H:%M:%S'),
settings.get('model', 'N/A'),
settings.get('temperature', 'N/A'),
settings.get('max_tokens', 'N/A'),
settings.get('num_responses', 'N/A'),
'',
results['A']['score'],
results['A']['count'],
results['A']['min'],
results['A']['max'],
'',
results['B']['score'],
results['B']['count'],
results['B']['min'],
results['B']['max']
]
}
df_summary = pd.DataFrame(summary_data)
df_summary.to_excel(writer, sheet_name='Podsumowanie', index=False)
# Arkusz 2: Wszystkie odpowiedzi
df_responses = pd.DataFrame(responses_with_scores)
df_responses.to_excel(writer, sheet_name='Odpowiedzi', index=False)
buffer.seek(0)
return buffer
def export_to_json(self, responses_with_scores, results, settings):
"""
Eksportuje wyniki do JSON (zwraca BytesIO dla Streamlit download)
Args:
responses_with_scores: Lista odpowiedzi z ocenami
results: Wyniki testu
settings: Ustawienia testu
Returns:
BytesIO: Bufor JSON do pobrania
"""
data = {
'metadata': {
'timestamp': datetime.now().strftime('%Y-%m-%d %H:%M:%S'),
'model': settings.get('model', 'N/A'),
'temperature': settings.get('temperature', 'N/A'),
'max_tokens': settings.get('max_tokens', 'N/A'),
'num_responses': settings.get('num_responses', 'N/A')
},
'results': results,
'responses': responses_with_scores
}
buffer = BytesIO()
json_str = json.dumps(data, ensure_ascii=False, indent=2)
buffer.write(json_str.encode('utf-8'))
buffer.seek(0)
return buffer
def export_to_txt(self, responses_with_scores, results, settings):
"""
Eksportuje wyniki do TXT (zwraca BytesIO dla Streamlit download)
Args:
responses_with_scores: Lista odpowiedzi z ocenami
results: Wyniki testu
settings: Ustawienia testu
Returns:
BytesIO: Bufor TXT do pobrania
"""
buffer = BytesIO()
# Header
lines = [
"=" * 80,
"WYNIKI TESTU A/B PROMPTÓW",
"=" * 80,
"",
f"Data testu: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}",
f"Model: {settings.get('model', 'N/A')}",
f"Temperature: {settings.get('temperature', 'N/A')}",
f"Max Tokens: {settings.get('max_tokens', 'N/A')}",
f"Liczba odpowiedzi: {settings.get('num_responses', 'N/A')}",
"",
"=" * 80,
"PODSUMOWANIE WYNIKÓW",
"=" * 80,
"",
f"Option A:",
f" Średnia ocena: {results['A']['score']}",
f" Liczba: {results['A']['count']}",
f" Min: {results['A']['min']}",
f" Max: {results['A']['max']}",
"",
f"Option B:",
f" Średnia ocena: {results['B']['score']}",
f" Liczba: {results['B']['count']}",
f" Min: {results['B']['min']}",
f" Max: {results['B']['max']}",
"",
"=" * 80,
"WSZYSTKIE ODPOWIEDZI",
"=" * 80,
""
]
# Responses
for resp in responses_with_scores:
lines.extend([
f"\nOption: {resp['Option']}-{resp['Response_ID']}",
f"Ocena: {resp['Score']}",
"-" * 80,
f"{resp['Response']}",
"-" * 80
])
text = "\n".join(lines)
buffer.write(text.encode('utf-8'))
buffer.seek(0)
return buffer
def export_to_markdown(self, responses_with_scores, results, settings):
"""
Eksportuje wyniki do Markdown (zwraca BytesIO dla Streamlit download)
Args:
responses_with_scores: Lista odpowiedzi z ocenami
results: Wyniki testu
settings: Ustawienia testu
Returns:
BytesIO: Bufor Markdown do pobrania
"""
buffer = BytesIO()
lines = [
"# Wyniki Testu A/B Promptów",
"",
"## Metadata",
"",
f"- **Data testu**: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}",
f"- **Model**: {settings.get('model', 'N/A')}",
f"- **Temperature**: {settings.get('temperature', 'N/A')}",
f"- **Max Tokens**: {settings.get('max_tokens', 'N/A')}",
f"- **Liczba odpowiedzi**: {settings.get('num_responses', 'N/A')}",
"",
"## Podsumowanie Wyników",
"",
"| Option | Średnia Ocena | Liczba | Min | Max |",
"|--------|---------------|--------|-----|-----|",
f"| A | {results['A']['score']:.2f} | {results['A']['count']} | {results['A']['min']} | {results['A']['max']} |",
f"| B | {results['B']['score']:.2f} | {results['B']['count']} | {results['B']['min']} | {results['B']['max']} |",
""
]
# Zwycięzca
if results['A']['score'] > results['B']['score']:
diff = results['A']['score'] - results['B']['score']
lines.append(f"### 🏆 Zwycięzca: Prompt A (przewaga: +{diff:.2f})")
elif results['B']['score'] > results['A']['score']:
diff = results['B']['score'] - results['A']['score']
lines.append(f"### 🏆 Zwycięzca: Prompt B (przewaga: +{diff:.2f})")
else:
lines.append("### 🤝 Remis")
lines.extend([
"",
"## Wszystkie Odpowiedzi",
""
])
# Responses
for resp in responses_with_scores:
lines.extend([
f"### Option {resp['Option']}-{resp['Response_ID']} (Ocena: {resp['Score']})",
"",
"```",
resp['Response'],
"```",
""
])
text = "\n".join(lines)
buffer.write(text.encode('utf-8'))
buffer.seek(0)
return buffer
def export_to_word(self, responses_with_scores, results, settings):
"""
Eksportuje wyniki do Word (zwraca BytesIO dla Streamlit download)
Args:
responses_with_scores: Lista odpowiedzi z ocenami
results: Wyniki testu
settings: Ustawienia testu
Returns:
BytesIO: Bufor Word do pobrania
"""
doc = Document()
# Title
title = doc.add_heading('Wyniki Testu A/B Promptów', 0)
title.alignment = WD_PARAGRAPH_ALIGNMENT.CENTER
# Metadata
doc.add_heading('Metadata', level=1)
metadata_items = [
f"Data testu: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}",
f"Model: {settings.get('model', 'N/A')}",
f"Temperature: {settings.get('temperature', 'N/A')}",
f"Max Tokens: {settings.get('max_tokens', 'N/A')}",
f"Liczba odpowiedzi: {settings.get('num_responses', 'N/A')}"
]
for item in metadata_items:
doc.add_paragraph(item, style='List Bullet')
# Results Summary
doc.add_heading('Podsumowanie Wyników', level=1)
# Table
table = doc.add_table(rows=3, cols=5)
table.style = 'Light Grid Accent 1'
# Header
headers = ['Option', 'Średnia Ocena', 'Liczba', 'Min', 'Max']
for i, header in enumerate(headers):
table.rows[0].cells[i].text = header
# Option A
table.rows[1].cells[0].text = 'A'
table.rows[1].cells[1].text = f"{results['A']['score']:.2f}"
table.rows[1].cells[2].text = str(results['A']['count'])
table.rows[1].cells[3].text = str(results['A']['min'])
table.rows[1].cells[4].text = str(results['A']['max'])
# Option B
table.rows[2].cells[0].text = 'B'
table.rows[2].cells[1].text = f"{results['B']['score']:.2f}"
table.rows[2].cells[2].text = str(results['B']['count'])
table.rows[2].cells[3].text = str(results['B']['min'])
table.rows[2].cells[4].text = str(results['B']['max'])
# Winner
doc.add_paragraph()
if results['A']['score'] > results['B']['score']:
diff = results['A']['score'] - results['B']['score']
winner_para = doc.add_paragraph()
winner_run = winner_para.add_run(f"🏆 Zwycięzca: Prompt A (przewaga: +{diff:.2f})")
winner_run.bold = True
winner_run.font.size = Pt(14)
elif results['B']['score'] > results['A']['score']:
diff = results['B']['score'] - results['A']['score']
winner_para = doc.add_paragraph()
winner_run = winner_para.add_run(f"🏆 Zwycięzca: Prompt B (przewaga: +{diff:.2f})")
winner_run.bold = True
winner_run.font.size = Pt(14)
else:
winner_para = doc.add_paragraph()
winner_run = winner_para.add_run("🤝 Remis")
winner_run.bold = True
winner_run.font.size = Pt(14)
# All responses
doc.add_page_break()
doc.add_heading('Wszystkie Odpowiedzi', level=1)
for resp in responses_with_scores:
doc.add_heading(f"Option {resp['Option']}-{resp['Response_ID']} (Ocena: {resp['Score']})", level=2)
doc.add_paragraph(resp['Response'])
doc.add_paragraph()
# Save to buffer
buffer = BytesIO()
doc.save(buffer)
buffer.seek(0)
return buffer