Spaces:
Running
Running
import io | |
import os | |
# os.system("wget -P cvec/ https://huggingface.co/spaces/innnky/nanami/resolve/main/checkpoint_best_legacy_500.pt") | |
import gradio as gr | |
import gradio.processing_utils as gr_pu | |
import librosa | |
import numpy as np | |
import soundfile | |
from inference.infer_tool import Svc | |
import logging | |
import subprocess | |
import edge_tts | |
import asyncio | |
from scipy.io import wavfile | |
import librosa | |
import torch | |
import time | |
logging.getLogger('numba').setLevel(logging.WARNING) | |
logging.getLogger('markdown_it').setLevel(logging.WARNING) | |
logging.getLogger('urllib3').setLevel(logging.WARNING) | |
logging.getLogger('matplotlib').setLevel(logging.WARNING) | |
logging.getLogger('multipart').setLevel(logging.WARNING) | |
model = None | |
spk = None | |
cuda = [] | |
if torch.cuda.is_available(): | |
for i in range(torch.cuda.device_count()): | |
cuda.append("cuda:{}".format(i)) | |
def vc_fn(sid, input_audio, vc_transform, auto_f0,cluster_ratio, slice_db, noise_scale,pad_seconds,cl_num,lg_num,lgr_num,F0_mean_pooling): | |
global model | |
try: | |
if input_audio is None: | |
return "You need to upload an audio", None | |
if model is None: | |
return "You need to upload an model", None | |
sampling_rate, audio = input_audio | |
# print(audio.shape,sampling_rate) | |
audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32) | |
if len(audio.shape) > 1: | |
audio = librosa.to_mono(audio.transpose(1, 0)) | |
temp_path = "temp.wav" | |
soundfile.write(temp_path, audio, sampling_rate, format="wav") | |
_audio = model.slice_inference(temp_path, sid, vc_transform, slice_db, cluster_ratio, auto_f0, noise_scale,pad_seconds,cl_num,lg_num,lgr_num,F0_mean_pooling) | |
model.clear_empty() | |
os.remove(temp_path) | |
#构建保存文件的路径,并保存到results文件夹内 | |
timestamp = str(int(time.time())) | |
output_file = os.path.join("results", sid + "_" + timestamp + ".wav") | |
soundfile.write(output_file, _audio, model.target_sample, format="wav") | |
return "Success", (model.target_sample, _audio) | |
except Exception as e: | |
return "异常信息:"+str(e)+"\n请排障后重试",None | |
def tts_func(_text,_rate): | |
#使用edge-tts把文字转成音频 | |
# voice = "zh-CN-XiaoyiNeural"#女性,较高音 | |
# voice = "zh-CN-YunxiNeural"#男性 | |
voice = "zh-CN-YunxiNeural"#男性 | |
output_file = _text[0:10]+".wav" | |
# communicate = edge_tts.Communicate(_text, voice) | |
# await communicate.save(output_file) | |
if _rate>=0: | |
ratestr="+{:.0%}".format(_rate) | |
elif _rate<0: | |
ratestr="{:.0%}".format(_rate)#减号自带 | |
p=subprocess.Popen(["edge-tts", | |
"--text",_text, | |
"--write-media",output_file, | |
"--voice",voice, | |
"--rate="+ratestr] | |
,shell=True, | |
stdout=subprocess.PIPE, | |
stdin=subprocess.PIPE) | |
p.wait() | |
return output_file | |
def vc_fn2(sid, input_audio, vc_transform, auto_f0,cluster_ratio, slice_db, noise_scale,pad_seconds,cl_num,lg_num,lgr_num,text2tts,tts_rate,F0_mean_pooling): | |
#使用edge-tts把文字转成音频 | |
output_file=tts_func(text2tts,tts_rate) | |
#调整采样率 | |
sr2=44100 | |
wav, sr = librosa.load(output_file) | |
wav2 = librosa.resample(wav, orig_sr=sr, target_sr=sr2) | |
save_path2= text2tts[0:10]+"_44k"+".wav" | |
wavfile.write(save_path2,sr2, | |
(wav2 * np.iinfo(np.int16).max).astype(np.int16) | |
) | |
#读取音频 | |
sample_rate, data=gr_pu.audio_from_file(save_path2) | |
vc_input=(sample_rate, data) | |
a,b=vc_fn(sid, vc_input, vc_transform,auto_f0,cluster_ratio, slice_db, noise_scale,pad_seconds,cl_num,lg_num,lgr_num,F0_mean_pooling) | |
os.remove(output_file) | |
os.remove(save_path2) | |
return a,b | |
app = gr.Blocks() | |
with app: | |
with gr.Tabs(): | |
with gr.TabItem("Sovits4.0"): | |
gr.Markdown(value=""" | |
Sovits4.0 WebUI | |
""") | |
gr.Markdown(value=""" | |
<font size=3>下面是模型文件选择:</font> | |
""") | |
model_path = gr.File(label="模型文件") | |
gr.Markdown(value=""" | |
<font size=3>下面是配置文件选择:</font> | |
""") | |
config_path = gr.File(label="配置文件") | |
gr.Markdown(value=""" | |
<font size=3>下面是聚类模型文件选择,没有可以不填:</font> | |
""") | |
cluster_model_path = gr.File(label="聚类模型文件") | |
device = gr.Dropdown(label="推理设备,默认为自动选择cpu和gpu",choices=["Auto",*cuda,"cpu"],value="Auto") | |
gr.Markdown(value=""" | |
<font size=3>全部上传完毕后(全部文件模块显示download),点击模型解析进行解析:</font> | |
""") | |
model_analysis_button = gr.Button(value="模型解析") | |
sid = gr.Dropdown(label="音色(说话人)") | |
sid_output = gr.Textbox(label="Output Message") | |
text2tts=gr.Textbox(label="在此输入要转译的文字。注意,使用该功能建议打开F0预测,不然会很怪") | |
tts_rate = gr.Number(label="tts语速", value=0) | |
vc_input3 = gr.Audio(label="上传音频") | |
vc_transform = gr.Number(label="变调(整数,可以正负,半音数量,升高八度就是12)", value=0) | |
cluster_ratio = gr.Number(label="聚类模型混合比例,0-1之间,默认为0不启用聚类,能提升音色相似度,但会导致咬字下降(如果使用建议0.5左右)", value=0) | |
auto_f0 = gr.Checkbox(label="自动f0预测,配合聚类模型f0预测效果更好,会导致变调功能失效(仅限转换语音,歌声不要勾选此项会究极跑调)", value=False) | |
F0_mean_pooling = gr.Checkbox(label="是否对F0使用均值滤波器(池化),对部分哑音有改善。注意,启动该选项会导致推理速度下降,默认关闭", value=False) | |
slice_db = gr.Number(label="切片阈值", value=-40) | |
noise_scale = gr.Number(label="noise_scale 建议不要动,会影响音质,玄学参数", value=0.4) | |
cl_num = gr.Number(label="音频自动切片,0为不切片,单位为秒/s", value=0) | |
pad_seconds = gr.Number(label="推理音频pad秒数,由于未知原因开头结尾会有异响,pad一小段静音段后就不会出现", value=0.5) | |
lg_num = gr.Number(label="两端音频切片的交叉淡入长度,如果自动切片后出现人声不连贯可调整该数值,如果连贯建议采用默认值0,注意,该设置会影响推理速度,单位为秒/s", value=0) | |
lgr_num = gr.Number(label="自动音频切片后,需要舍弃每段切片的头尾。该参数设置交叉长度保留的比例,范围0-1,左开右闭", value=0.75,interactive=True) | |
vc_submit = gr.Button("音频直接转换", variant="primary") | |
vc_submit2 = gr.Button("文字转音频+转换", variant="primary") | |
vc_output1 = gr.Textbox(label="Output Message") | |
vc_output2 = gr.Audio(label="Output Audio") | |
def modelAnalysis(model_path,config_path,cluster_model_path,device): | |
global model | |
debug=False | |
if debug: | |
model = Svc(model_path.name, config_path.name,device=device if device!="Auto" else None,cluster_model_path= cluster_model_path.name if cluster_model_path!=None else "") | |
spks = list(model.spk2id.keys()) | |
device_name = torch.cuda.get_device_properties(model.dev).name if "cuda" in str(model.dev) else str(model.dev) | |
return sid.update(choices = spks,value=spks[0]),"ok,模型被加载到了设备{}之上".format(device_name) | |
else: | |
try: | |
model = Svc(model_path.name, config_path.name,device=device if device!="Auto" else None,cluster_model_path= cluster_model_path.name if cluster_model_path!=None else "") | |
spks = list(model.spk2id.keys()) | |
device_name = torch.cuda.get_device_properties(model.dev).name if "cuda" in str(model.dev) else str(model.dev) | |
return sid.update(choices = spks,value=spks[0]),"ok,模型被加载到了设备{}之上".format(device_name) | |
except Exception as e: | |
return "","异常信息:"+str(e)+"\n请排障后重试" | |
vc_submit.click(vc_fn, [sid, vc_input3, vc_transform,auto_f0,cluster_ratio, slice_db, noise_scale,pad_seconds,cl_num,lg_num,lgr_num,F0_mean_pooling], [vc_output1, vc_output2]) | |
vc_submit2.click(vc_fn2, [sid, vc_input3, vc_transform,auto_f0,cluster_ratio, slice_db, noise_scale,pad_seconds,cl_num,lg_num,lgr_num,text2tts,tts_rate,F0_mean_pooling], [vc_output1, vc_output2]) | |
model_analysis_button.click(modelAnalysis,[model_path,config_path,cluster_model_path,device],[sid,sid_output]) | |
app.launch() | |