Criar app.py
Browse files
app.py
ADDED
@@ -0,0 +1,319 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
|
4 |
+
# os.system("wget -P cvec/ https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/hubert_base.pt")
|
5 |
+
import gradio as gr
|
6 |
+
import librosa
|
7 |
+
import numpy as np
|
8 |
+
import logging
|
9 |
+
from fairseq import checkpoint_utils
|
10 |
+
from vc_infer_pipeline import VC
|
11 |
+
import traceback
|
12 |
+
from config import Config
|
13 |
+
from lib.infer_pack.models import (
|
14 |
+
SynthesizerTrnMs256NSFsid,
|
15 |
+
SynthesizerTrnMs256NSFsid_nono,
|
16 |
+
SynthesizerTrnMs768NSFsid,
|
17 |
+
SynthesizerTrnMs768NSFsid_nono,
|
18 |
+
)
|
19 |
+
from i18n import I18nAuto
|
20 |
+
|
21 |
+
logging.getLogger("numba").setLevel(logging.WARNING)
|
22 |
+
logging.getLogger("markdown_it").setLevel(logging.WARNING)
|
23 |
+
logging.getLogger("urllib3").setLevel(logging.WARNING)
|
24 |
+
logging.getLogger("matplotlib").setLevel(logging.WARNING)
|
25 |
+
|
26 |
+
i18n = I18nAuto()
|
27 |
+
i18n.print()
|
28 |
+
|
29 |
+
config = Config()
|
30 |
+
|
31 |
+
weight_root = "weights"
|
32 |
+
weight_uvr5_root = "uvr5_weights"
|
33 |
+
index_root = "logs"
|
34 |
+
names = []
|
35 |
+
hubert_model = None
|
36 |
+
for name in os.listdir(weight_root):
|
37 |
+
if name.endswith(".pth"):
|
38 |
+
names.append(name)
|
39 |
+
index_paths = []
|
40 |
+
for root, dirs, files in os.walk(index_root, topdown=False):
|
41 |
+
for name in files:
|
42 |
+
if name.endswith(".index") and "trained" not in name:
|
43 |
+
index_paths.append("%s/%s" % (root, name))
|
44 |
+
|
45 |
+
|
46 |
+
def get_vc(sid):
|
47 |
+
global n_spk, tgt_sr, net_g, vc, cpt, version
|
48 |
+
if sid == "" or sid == []:
|
49 |
+
global hubert_model
|
50 |
+
if hubert_model != None: # 考虑到轮询, 需要加个判断看是否 sid 是由有模型切换到无模型的
|
51 |
+
print("clean_empty_cache")
|
52 |
+
del net_g, n_spk, vc, hubert_model, tgt_sr # ,cpt
|
53 |
+
hubert_model = net_g = n_spk = vc = hubert_model = tgt_sr = None
|
54 |
+
if torch.cuda.is_available():
|
55 |
+
torch.cuda.empty_cache()
|
56 |
+
###楼下不这么折腾清理不干净
|
57 |
+
if_f0 = cpt.get("f0", 1)
|
58 |
+
version = cpt.get("version", "v1")
|
59 |
+
if version == "v1":
|
60 |
+
if if_f0 == 1:
|
61 |
+
net_g = SynthesizerTrnMs256NSFsid(
|
62 |
+
*cpt["config"], is_half=config.is_half
|
63 |
+
)
|
64 |
+
else:
|
65 |
+
net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
|
66 |
+
elif version == "v2":
|
67 |
+
if if_f0 == 1:
|
68 |
+
net_g = SynthesizerTrnMs768NSFsid(
|
69 |
+
*cpt["config"], is_half=config.is_half
|
70 |
+
)
|
71 |
+
else:
|
72 |
+
net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"])
|
73 |
+
del net_g, cpt
|
74 |
+
if torch.cuda.is_available():
|
75 |
+
torch.cuda.empty_cache()
|
76 |
+
cpt = None
|
77 |
+
return {"visible": False, "__type__": "update"}
|
78 |
+
person = "%s/%s" % (weight_root, sid)
|
79 |
+
print("loading %s" % person)
|
80 |
+
cpt = torch.load(person, map_location="cpu")
|
81 |
+
tgt_sr = cpt["config"][-1]
|
82 |
+
cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0] # n_spk
|
83 |
+
if_f0 = cpt.get("f0", 1)
|
84 |
+
version = cpt.get("version", "v1")
|
85 |
+
if version == "v1":
|
86 |
+
if if_f0 == 1:
|
87 |
+
net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=config.is_half)
|
88 |
+
else:
|
89 |
+
net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
|
90 |
+
elif version == "v2":
|
91 |
+
if if_f0 == 1:
|
92 |
+
net_g = SynthesizerTrnMs768NSFsid(*cpt["config"], is_half=config.is_half)
|
93 |
+
else:
|
94 |
+
net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"])
|
95 |
+
del net_g.enc_q
|
96 |
+
print(net_g.load_state_dict(cpt["weight"], strict=False))
|
97 |
+
net_g.eval().to(config.device)
|
98 |
+
if config.is_half:
|
99 |
+
net_g = net_g.half()
|
100 |
+
else:
|
101 |
+
net_g = net_g.float()
|
102 |
+
vc = VC(tgt_sr, config)
|
103 |
+
n_spk = cpt["config"][-3]
|
104 |
+
return {"visible": True, "maximum": n_spk, "__type__": "update"}
|
105 |
+
|
106 |
+
|
107 |
+
def load_hubert():
|
108 |
+
global hubert_model
|
109 |
+
models, _, _ = checkpoint_utils.load_model_ensemble_and_task(
|
110 |
+
["hubert_base.pt"],
|
111 |
+
suffix="",
|
112 |
+
)
|
113 |
+
hubert_model = models[0]
|
114 |
+
hubert_model = hubert_model.to(config.device)
|
115 |
+
if config.is_half:
|
116 |
+
hubert_model = hubert_model.half()
|
117 |
+
else:
|
118 |
+
hubert_model = hubert_model.float()
|
119 |
+
hubert_model.eval()
|
120 |
+
|
121 |
+
|
122 |
+
def vc_single(
|
123 |
+
sid,
|
124 |
+
input_audio_path,
|
125 |
+
f0_up_key,
|
126 |
+
f0_file,
|
127 |
+
f0_method,
|
128 |
+
file_index,
|
129 |
+
file_index2,
|
130 |
+
# file_big_npy,
|
131 |
+
index_rate,
|
132 |
+
filter_radius,
|
133 |
+
resample_sr,
|
134 |
+
rms_mix_rate,
|
135 |
+
protect,
|
136 |
+
): # spk_item, input_audio0, vc_transform0,f0_file,f0method0
|
137 |
+
global tgt_sr, net_g, vc, hubert_model, version
|
138 |
+
if input_audio_path is None:
|
139 |
+
return "You need to upload an audio", None
|
140 |
+
f0_up_key = int(f0_up_key)
|
141 |
+
try:
|
142 |
+
audio = input_audio_path[1] / 32768.0
|
143 |
+
if len(audio.shape) == 2:
|
144 |
+
audio = np.mean(audio, -1)
|
145 |
+
audio = librosa.resample(audio, orig_sr=input_audio_path[0], target_sr=16000)
|
146 |
+
audio_max = np.abs(audio).max() / 0.95
|
147 |
+
if audio_max > 1:
|
148 |
+
audio /= audio_max
|
149 |
+
times = [0, 0, 0]
|
150 |
+
if hubert_model == None:
|
151 |
+
load_hubert()
|
152 |
+
if_f0 = cpt.get("f0", 1)
|
153 |
+
file_index = (
|
154 |
+
(
|
155 |
+
file_index.strip(" ")
|
156 |
+
.strip('"')
|
157 |
+
.strip("\n")
|
158 |
+
.strip('"')
|
159 |
+
.strip(" ")
|
160 |
+
.replace("trained", "added")
|
161 |
+
)
|
162 |
+
if file_index != ""
|
163 |
+
else file_index2
|
164 |
+
) # 防止小白写错,自动帮他替换掉
|
165 |
+
# file_big_npy = (
|
166 |
+
# file_big_npy.strip(" ").strip('"').strip("\n").strip('"').strip(" ")
|
167 |
+
# )
|
168 |
+
audio_opt = vc.pipeline(
|
169 |
+
hubert_model,
|
170 |
+
net_g,
|
171 |
+
sid,
|
172 |
+
audio,
|
173 |
+
input_audio_path,
|
174 |
+
times,
|
175 |
+
f0_up_key,
|
176 |
+
f0_method,
|
177 |
+
file_index,
|
178 |
+
# file_big_npy,
|
179 |
+
index_rate,
|
180 |
+
if_f0,
|
181 |
+
filter_radius,
|
182 |
+
tgt_sr,
|
183 |
+
resample_sr,
|
184 |
+
rms_mix_rate,
|
185 |
+
version,
|
186 |
+
protect,
|
187 |
+
f0_file=f0_file,
|
188 |
+
)
|
189 |
+
if resample_sr >= 16000 and tgt_sr != resample_sr:
|
190 |
+
tgt_sr = resample_sr
|
191 |
+
index_info = (
|
192 |
+
"Using index:%s." % file_index
|
193 |
+
if os.path.exists(file_index)
|
194 |
+
else "Index not used."
|
195 |
+
)
|
196 |
+
return "Success.\n %s\nTime:\n npy:%ss, f0:%ss, infer:%ss" % (
|
197 |
+
index_info,
|
198 |
+
times[0],
|
199 |
+
times[1],
|
200 |
+
times[2],
|
201 |
+
), (tgt_sr, audio_opt)
|
202 |
+
except:
|
203 |
+
info = traceback.format_exc()
|
204 |
+
print(info)
|
205 |
+
return info, (None, None)
|
206 |
+
|
207 |
+
|
208 |
+
app = gr.Blocks()
|
209 |
+
with app:
|
210 |
+
with gr.Tabs():
|
211 |
+
with gr.TabItem("在线demo"):
|
212 |
+
gr.Markdown(
|
213 |
+
value="""
|
214 |
+
RVC 在线demo
|
215 |
+
"""
|
216 |
+
)
|
217 |
+
sid = gr.Dropdown(label=i18n("推理音色"), choices=sorted(names))
|
218 |
+
with gr.Column():
|
219 |
+
spk_item = gr.Slider(
|
220 |
+
minimum=0,
|
221 |
+
maximum=2333,
|
222 |
+
step=1,
|
223 |
+
label=i18n("请选择说话人id"),
|
224 |
+
value=0,
|
225 |
+
visible=False,
|
226 |
+
interactive=True,
|
227 |
+
)
|
228 |
+
sid.change(
|
229 |
+
fn=get_vc,
|
230 |
+
inputs=[sid],
|
231 |
+
outputs=[spk_item],
|
232 |
+
)
|
233 |
+
gr.Markdown(
|
234 |
+
value=i18n("男转女推荐+12key, 女转男推荐-12key, 如果音域爆炸导致音色失真也可以自己调整到合适音域. ")
|
235 |
+
)
|
236 |
+
vc_input3 = gr.Audio(label="上传音频(长度小于90秒)")
|
237 |
+
vc_transform0 = gr.Number(label=i18n("变调(整数, 半音数量, 升八度12降八度-12)"), value=0)
|
238 |
+
f0method0 = gr.Radio(
|
239 |
+
label=i18n("选择音高提取算法,输入歌声可用pm提速,harvest低音好但巨慢无比,crepe效果好但吃GPU"),
|
240 |
+
choices=["pm", "harvest", "crepe"],
|
241 |
+
value="pm",
|
242 |
+
interactive=True,
|
243 |
+
)
|
244 |
+
filter_radius0 = gr.Slider(
|
245 |
+
minimum=0,
|
246 |
+
maximum=7,
|
247 |
+
label=i18n(">=3则使用对harvest音高识别的结果使用中值滤波,数值为滤波半径,使用可以削弱哑音"),
|
248 |
+
value=3,
|
249 |
+
step=1,
|
250 |
+
interactive=True,
|
251 |
+
)
|
252 |
+
with gr.Column():
|
253 |
+
file_index1 = gr.Textbox(
|
254 |
+
label=i18n("特征检索库文件路径,为空则使用下拉的选择结果"),
|
255 |
+
value="",
|
256 |
+
interactive=False,
|
257 |
+
visible=False,
|
258 |
+
)
|
259 |
+
file_index2 = gr.Dropdown(
|
260 |
+
label=i18n("自动检测index路径,下拉式选择(dropdown)"),
|
261 |
+
choices=sorted(index_paths),
|
262 |
+
interactive=True,
|
263 |
+
)
|
264 |
+
index_rate1 = gr.Slider(
|
265 |
+
minimum=0,
|
266 |
+
maximum=1,
|
267 |
+
label=i18n("检索特征占比"),
|
268 |
+
value=0.88,
|
269 |
+
interactive=True,
|
270 |
+
)
|
271 |
+
resample_sr0 = gr.Slider(
|
272 |
+
minimum=0,
|
273 |
+
maximum=48000,
|
274 |
+
label=i18n("后处理重采样至最终采样率,0为不进行重采样"),
|
275 |
+
value=0,
|
276 |
+
step=1,
|
277 |
+
interactive=True,
|
278 |
+
)
|
279 |
+
rms_mix_rate0 = gr.Slider(
|
280 |
+
minimum=0,
|
281 |
+
maximum=1,
|
282 |
+
label=i18n("输入源音量包络替换输出音量包络融合比例,越靠近1越使用输出包络"),
|
283 |
+
value=1,
|
284 |
+
interactive=True,
|
285 |
+
)
|
286 |
+
protect0 = gr.Slider(
|
287 |
+
minimum=0,
|
288 |
+
maximum=0.5,
|
289 |
+
label=i18n("保护清辅音和呼吸声,防止电音撕裂等artifact,拉满0.5不开启,调低加大保护力度但可能降低索引效果"),
|
290 |
+
value=0.33,
|
291 |
+
step=0.01,
|
292 |
+
interactive=True,
|
293 |
+
)
|
294 |
+
f0_file = gr.File(label=i18n("F0曲线文件, 可选, 一行一个音高, 代替默认F0及升降调"))
|
295 |
+
but0 = gr.Button(i18n("转换"), variant="primary")
|
296 |
+
vc_output1 = gr.Textbox(label=i18n("输出信息"))
|
297 |
+
vc_output2 = gr.Audio(label=i18n("输出音频(右下角三个点,点了可以下载)"))
|
298 |
+
but0.click(
|
299 |
+
vc_single,
|
300 |
+
[
|
301 |
+
spk_item,
|
302 |
+
vc_input3,
|
303 |
+
vc_transform0,
|
304 |
+
f0_file,
|
305 |
+
f0method0,
|
306 |
+
file_index1,
|
307 |
+
file_index2,
|
308 |
+
# file_big_npy1,
|
309 |
+
index_rate1,
|
310 |
+
filter_radius0,
|
311 |
+
resample_sr0,
|
312 |
+
rms_mix_rate0,
|
313 |
+
protect0,
|
314 |
+
],
|
315 |
+
[vc_output1, vc_output2],
|
316 |
+
)
|
317 |
+
|
318 |
+
|
319 |
+
app.launch()
|