Marcis commited on
Commit
3d6e3f5
·
verified ·
1 Parent(s): 271c994

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +105 -1478
app.py CHANGED
@@ -1,136 +1,32 @@
 
1
  import os
2
- import sys
3
- from dotenv import load_dotenv
4
 
5
- now_dir = os.getcwd()
6
- sys.path.append(now_dir)
7
- load_dotenv()
8
- from infer.modules.vc.modules import VC
9
- from infer.modules.uvr5.modules import uvr
10
- from infer.lib.train.process_ckpt import (
11
- change_info,
12
- extract_small_model,
13
- merge,
14
- show_info,
15
- )
16
- from i18n.i18n import I18nAuto
17
- from configs.config import Config
18
- from sklearn.cluster import MiniBatchKMeans
19
- import torch
20
- import numpy as np
21
  import gradio as gr
22
- import faiss
23
- import fairseq
24
- import pathlib
25
- import json
26
- from time import sleep
27
- from subprocess import Popen
28
- from random import shuffle
29
- import warnings
30
- import traceback
31
- import threading
32
- import shutil
33
- import logging
34
 
 
 
 
35
 
36
  logging.getLogger("numba").setLevel(logging.WARNING)
37
-
 
 
38
  logger = logging.getLogger(__name__)
39
 
40
- tmp = os.path.join(now_dir, "TEMP")
41
- shutil.rmtree(tmp, ignore_errors=True)
42
- shutil.rmtree("%s/runtime/Lib/site-packages/infer_pack" % (now_dir), ignore_errors=True)
43
- shutil.rmtree("%s/runtime/Lib/site-packages/uvr5_pack" % (now_dir), ignore_errors=True)
44
- os.makedirs(tmp, exist_ok=True)
45
- os.makedirs(os.path.join(now_dir, "logs"), exist_ok=True)
46
- os.makedirs(os.path.join(now_dir, "assets/weights"), exist_ok=True)
47
- os.environ["TEMP"] = tmp
48
- warnings.filterwarnings("ignore")
49
- torch.manual_seed(114514)
50
-
51
-
52
- config = Config()
53
- vc = VC(config)
54
-
55
-
56
- if config.dml == True:
57
-
58
- def forward_dml(ctx, x, scale):
59
- ctx.scale = scale
60
- res = x.clone().detach()
61
- return res
62
-
63
- fairseq.modules.grad_multiply.GradMultiply.forward = forward_dml
64
  i18n = I18nAuto()
65
  logger.info(i18n)
66
- # 判断是否有能用来训练和加速推理的N卡
67
- ngpu = torch.cuda.device_count()
68
- gpu_infos = []
69
- mem = []
70
- if_gpu_ok = False
71
-
72
- if torch.cuda.is_available() or ngpu != 0:
73
- for i in range(ngpu):
74
- gpu_name = torch.cuda.get_device_name(i)
75
- if any(
76
- value in gpu_name.upper()
77
- for value in [
78
- "10",
79
- "16",
80
- "20",
81
- "30",
82
- "40",
83
- "A2",
84
- "A3",
85
- "A4",
86
- "P4",
87
- "A50",
88
- "500",
89
- "A60",
90
- "70",
91
- "80",
92
- "90",
93
- "M4",
94
- "T4",
95
- "TITAN",
96
- ]
97
- ):
98
- # A10#A100#V100#A40#P40#M40#K80#A4500
99
- if_gpu_ok = True # 至少有一张能用的N卡
100
- gpu_infos.append("%s\t%s" % (i, gpu_name))
101
- mem.append(
102
- int(
103
- torch.cuda.get_device_properties(i).total_memory
104
- / 1024
105
- / 1024
106
- / 1024
107
- + 0.4
108
- )
109
- )
110
- if if_gpu_ok and len(gpu_infos) > 0:
111
- gpu_info = "\n".join(gpu_infos)
112
- default_batch_size = min(mem) // 2
113
- else:
114
- gpu_info = i18n("很遗憾您这没有能用的显卡来支持您训练")
115
- default_batch_size = 1
116
- gpus = "-".join([i[0] for i in gpu_infos])
117
-
118
-
119
- class ToolButton(gr.Button, gr.components.FormComponent):
120
- """Small button with single emoji as text, fits inside gradio forms"""
121
-
122
- def __init__(self, **kwargs):
123
- super().__init__(variant="tool", **kwargs)
124
-
125
- def get_block_name(self):
126
- return "button"
127
 
 
 
 
128
 
129
  weight_root = os.getenv("weight_root")
130
  weight_uvr5_root = os.getenv("weight_uvr5_root")
131
  index_root = os.getenv("index_root")
132
-
133
  names = []
 
134
  for name in os.listdir(weight_root):
135
  if name.endswith(".pth"):
136
  names.append(name)
@@ -139,650 +35,19 @@ for root, dirs, files in os.walk(index_root, topdown=False):
139
  for name in files:
140
  if name.endswith(".index") and "trained" not in name:
141
  index_paths.append("%s/%s" % (root, name))
142
- uvr5_names = []
143
- for name in os.listdir(weight_uvr5_root):
144
- if name.endswith(".pth") or "onnx" in name:
145
- uvr5_names.append(name.replace(".pth", ""))
146
-
147
-
148
- def change_choices():
149
- names = []
150
- for name in os.listdir(weight_root):
151
- if name.endswith(".pth"):
152
- names.append(name)
153
- index_paths = []
154
- for root, dirs, files in os.walk(index_root, topdown=False):
155
- for name in files:
156
- if name.endswith(".index") and "trained" not in name:
157
- index_paths.append("%s/%s" % (root, name))
158
- return {"choices": sorted(names), "__type__": "update"}, {
159
- "choices": sorted(index_paths),
160
- "__type__": "update",
161
- }
162
-
163
-
164
- def clean():
165
- return {"value": "", "__type__": "update"}
166
-
167
-
168
- def export_onnx(ModelPath, ExportedPath):
169
- from infer.modules.onnx.export import export_onnx as eo
170
-
171
- eo(ModelPath, ExportedPath)
172
-
173
-
174
- sr_dict = {
175
- "32k": 32000,
176
- "40k": 40000,
177
- "48k": 48000,
178
- }
179
-
180
-
181
- def if_done(done, p):
182
- while 1:
183
- if p.poll() is None:
184
- sleep(0.5)
185
- else:
186
- break
187
- done[0] = True
188
-
189
-
190
- def if_done_multi(done, ps):
191
- while 1:
192
- # poll==None代表进程未结束
193
- # 只要有一个进程未结束都不停
194
- flag = 1
195
- for p in ps:
196
- if p.poll() is None:
197
- flag = 0
198
- sleep(0.5)
199
- break
200
- if flag == 1:
201
- break
202
- done[0] = True
203
-
204
-
205
- def preprocess_dataset(trainset_dir, exp_dir, sr, n_p):
206
- sr = sr_dict[sr]
207
- os.makedirs("%s/logs/%s" % (now_dir, exp_dir), exist_ok=True)
208
- f = open("%s/logs/%s/preprocess.log" % (now_dir, exp_dir), "w")
209
- f.close()
210
- per = 3.0 if config.is_half else 3.7
211
- cmd = '"%s" infer/modules/train/preprocess.py "%s" %s %s "%s/logs/%s" %s %.1f' % (
212
- config.python_cmd,
213
- trainset_dir,
214
- sr,
215
- n_p,
216
- now_dir,
217
- exp_dir,
218
- config.noparallel,
219
- per,
220
- )
221
- logger.info(cmd)
222
- # , stdin=PIPE, stdout=PIPE,stderr=PIPE,cwd=now_dir
223
- p = Popen(cmd, shell=True)
224
- # 煞笔gr, popen read都非得全跑完了再一次性读取, 不用gr就正常读一句输出一句;只能额外弄出一个文本流定时读
225
- done = [False]
226
- threading.Thread(
227
- target=if_done,
228
- args=(
229
- done,
230
- p,
231
- ),
232
- ).start()
233
- while 1:
234
- with open("%s/logs/%s/preprocess.log" % (now_dir, exp_dir), "r") as f:
235
- yield (f.read())
236
- sleep(1)
237
- if done[0]:
238
- break
239
- with open("%s/logs/%s/preprocess.log" % (now_dir, exp_dir), "r") as f:
240
- log = f.read()
241
- logger.info(log)
242
- yield log
243
-
244
-
245
- # but2.click(extract_f0,[gpus6,np7,f0method8,if_f0_3,trainset_dir4],[info2])
246
- def extract_f0_feature(gpus, n_p, f0method, if_f0, exp_dir, version19, gpus_rmvpe):
247
- gpus = gpus.split("-")
248
- os.makedirs("%s/logs/%s" % (now_dir, exp_dir), exist_ok=True)
249
- f = open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "w")
250
- f.close()
251
- if if_f0:
252
- if f0method != "rmvpe_gpu":
253
- cmd = (
254
- '"%s" infer/modules/train/extract/extract_f0_print.py "%s/logs/%s" %s %s'
255
- % (
256
- config.python_cmd,
257
- now_dir,
258
- exp_dir,
259
- n_p,
260
- f0method,
261
- )
262
- )
263
- logger.info(cmd)
264
- p = Popen(
265
- cmd, shell=True, cwd=now_dir
266
- ) # , stdin=PIPE, stdout=PIPE,stderr=PIPE
267
- # 煞笔gr, popen read都非得全跑完了再一次性读取, 不用gr就正常读一句输出一句;只能额外弄出一个文本流定时读
268
- done = [False]
269
- threading.Thread(
270
- target=if_done,
271
- args=(
272
- done,
273
- p,
274
- ),
275
- ).start()
276
- else:
277
- if gpus_rmvpe != "-":
278
- gpus_rmvpe = gpus_rmvpe.split("-")
279
- leng = len(gpus_rmvpe)
280
- ps = []
281
- for idx, n_g in enumerate(gpus_rmvpe):
282
- cmd = (
283
- '"%s" infer/modules/train/extract/extract_f0_rmvpe.py %s %s %s "%s/logs/%s" %s '
284
- % (
285
- config.python_cmd,
286
- leng,
287
- idx,
288
- n_g,
289
- now_dir,
290
- exp_dir,
291
- config.is_half,
292
- )
293
- )
294
- logger.info(cmd)
295
- p = Popen(
296
- cmd, shell=True, cwd=now_dir
297
- ) # , shell=True, stdin=PIPE, stdout=PIPE, stderr=PIPE, cwd=now_dir
298
- ps.append(p)
299
- # 煞笔gr, popen read都非得全跑完了再一次性读取, 不用gr就正常读一句输出一句;只能额外弄出一个文本流定时读
300
- done = [False]
301
- threading.Thread(
302
- target=if_done_multi, #
303
- args=(
304
- done,
305
- ps,
306
- ),
307
- ).start()
308
- else:
309
- cmd = (
310
- config.python_cmd
311
- + ' infer/modules/train/extract/extract_f0_rmvpe_dml.py "%s/logs/%s" '
312
- % (
313
- now_dir,
314
- exp_dir,
315
- )
316
- )
317
- logger.info(cmd)
318
- p = Popen(
319
- cmd, shell=True, cwd=now_dir
320
- ) # , shell=True, stdin=PIPE, stdout=PIPE, stderr=PIPE, cwd=now_dir
321
- p.wait()
322
- done = [True]
323
- while 1:
324
- with open(
325
- "%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r"
326
- ) as f:
327
- yield (f.read())
328
- sleep(1)
329
- if done[0]:
330
- break
331
- with open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r") as f:
332
- log = f.read()
333
- logger.info(log)
334
- yield log
335
- # 对不同part分别开多进程
336
- """
337
- n_part=int(sys.argv[1])
338
- i_part=int(sys.argv[2])
339
- i_gpu=sys.argv[3]
340
- exp_dir=sys.argv[4]
341
- os.environ["CUDA_VISIBLE_DEVICES"]=str(i_gpu)
342
- """
343
- leng = len(gpus)
344
- ps = []
345
- for idx, n_g in enumerate(gpus):
346
- cmd = (
347
- '"%s" infer/modules/train/extract_feature_print.py %s %s %s %s "%s/logs/%s" %s'
348
- % (
349
- config.python_cmd,
350
- config.device,
351
- leng,
352
- idx,
353
- n_g,
354
- now_dir,
355
- exp_dir,
356
- version19,
357
- )
358
- )
359
- logger.info(cmd)
360
- p = Popen(
361
- cmd, shell=True, cwd=now_dir
362
- ) # , shell=True, stdin=PIPE, stdout=PIPE, stderr=PIPE, cwd=now_dir
363
- ps.append(p)
364
- # 煞笔gr, popen read都非得全跑完了再一次性读取, 不用gr就正常读一句输出一句;只能额外弄出一个文本流定时读
365
- done = [False]
366
- threading.Thread(
367
- target=if_done_multi,
368
- args=(
369
- done,
370
- ps,
371
- ),
372
- ).start()
373
- while 1:
374
- with open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r") as f:
375
- yield (f.read())
376
- sleep(1)
377
- if done[0]:
378
- break
379
- with open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r") as f:
380
- log = f.read()
381
- logger.info(log)
382
- yield log
383
-
384
-
385
- def get_pretrained_models(path_str, f0_str, sr2):
386
- if_pretrained_generator_exist = os.access(
387
- "assets/pretrained%s/%sG%s.pth" % (path_str, f0_str, sr2), os.F_OK
388
- )
389
- if_pretrained_discriminator_exist = os.access(
390
- "assets/pretrained%s/%sD%s.pth" % (path_str, f0_str, sr2), os.F_OK
391
- )
392
- if not if_pretrained_generator_exist:
393
- logger.warning(
394
- "assets/pretrained%s/%sG%s.pth not exist, will not use pretrained model",
395
- path_str,
396
- f0_str,
397
- sr2,
398
- )
399
- if not if_pretrained_discriminator_exist:
400
- logger.warning(
401
- "assets/pretrained%s/%sD%s.pth not exist, will not use pretrained model",
402
- path_str,
403
- f0_str,
404
- sr2,
405
- )
406
- return (
407
- "assets/pretrained%s/%sG%s.pth" % (path_str, f0_str, sr2)
408
- if if_pretrained_generator_exist
409
- else "",
410
- "assets/pretrained%s/%sD%s.pth" % (path_str, f0_str, sr2)
411
- if if_pretrained_discriminator_exist
412
- else "",
413
- )
414
-
415
-
416
- def change_sr2(sr2, if_f0_3, version19):
417
- path_str = "" if version19 == "v1" else "_v2"
418
- f0_str = "f0" if if_f0_3 else ""
419
- return get_pretrained_models(path_str, f0_str, sr2)
420
-
421
-
422
- def change_version19(sr2, if_f0_3, version19):
423
- path_str = "" if version19 == "v1" else "_v2"
424
- if sr2 == "32k" and version19 == "v1":
425
- sr2 = "40k"
426
- to_return_sr2 = (
427
- {"choices": ["40k", "48k"], "__type__": "update", "value": sr2}
428
- if version19 == "v1"
429
- else {"choices": ["40k", "48k", "32k"], "__type__": "update", "value": sr2}
430
- )
431
- f0_str = "f0" if if_f0_3 else ""
432
- return (
433
- *get_pretrained_models(path_str, f0_str, sr2),
434
- to_return_sr2,
435
- )
436
-
437
-
438
- def change_f0(if_f0_3, sr2, version19): # f0method8,pretrained_G14,pretrained_D15
439
- path_str = "" if version19 == "v1" else "_v2"
440
- return (
441
- {"visible": if_f0_3, "__type__": "update"},
442
- {"visible": if_f0_3, "__type__": "update"},
443
- *get_pretrained_models(path_str, "f0" if if_f0_3 == True else "", sr2),
444
- )
445
-
446
-
447
- # but3.click(click_train,[exp_dir1,sr2,if_f0_3,save_epoch10,total_epoch11,batch_size12,if_save_latest13,pretrained_G14,pretrained_D15,gpus16])
448
- def click_train(
449
- exp_dir1,
450
- sr2,
451
- if_f0_3,
452
- spk_id5,
453
- save_epoch10,
454
- total_epoch11,
455
- batch_size12,
456
- if_save_latest13,
457
- pretrained_G14,
458
- pretrained_D15,
459
- gpus16,
460
- if_cache_gpu17,
461
- if_save_every_weights18,
462
- version19,
463
- ):
464
- # 生成filelist
465
- exp_dir = "%s/logs/%s" % (now_dir, exp_dir1)
466
- os.makedirs(exp_dir, exist_ok=True)
467
- gt_wavs_dir = "%s/0_gt_wavs" % (exp_dir)
468
- feature_dir = (
469
- "%s/3_feature256" % (exp_dir)
470
- if version19 == "v1"
471
- else "%s/3_feature768" % (exp_dir)
472
- )
473
- if if_f0_3:
474
- f0_dir = "%s/2a_f0" % (exp_dir)
475
- f0nsf_dir = "%s/2b-f0nsf" % (exp_dir)
476
- names = (
477
- set([name.split(".")[0] for name in os.listdir(gt_wavs_dir)])
478
- & set([name.split(".")[0] for name in os.listdir(feature_dir)])
479
- & set([name.split(".")[0] for name in os.listdir(f0_dir)])
480
- & set([name.split(".")[0] for name in os.listdir(f0nsf_dir)])
481
- )
482
- else:
483
- names = set([name.split(".")[0] for name in os.listdir(gt_wavs_dir)]) & set(
484
- [name.split(".")[0] for name in os.listdir(feature_dir)]
485
- )
486
- opt = []
487
- for name in names:
488
- if if_f0_3:
489
- opt.append(
490
- "%s/%s.wav|%s/%s.npy|%s/%s.wav.npy|%s/%s.wav.npy|%s"
491
- % (
492
- gt_wavs_dir.replace("\\", "\\\\"),
493
- name,
494
- feature_dir.replace("\\", "\\\\"),
495
- name,
496
- f0_dir.replace("\\", "\\\\"),
497
- name,
498
- f0nsf_dir.replace("\\", "\\\\"),
499
- name,
500
- spk_id5,
501
- )
502
- )
503
- else:
504
- opt.append(
505
- "%s/%s.wav|%s/%s.npy|%s"
506
- % (
507
- gt_wavs_dir.replace("\\", "\\\\"),
508
- name,
509
- feature_dir.replace("\\", "\\\\"),
510
- name,
511
- spk_id5,
512
- )
513
- )
514
- fea_dim = 256 if version19 == "v1" else 768
515
- if if_f0_3:
516
- for _ in range(2):
517
- opt.append(
518
- "%s/logs/mute/0_gt_wavs/mute%s.wav|%s/logs/mute/3_feature%s/mute.npy|%s/logs/mute/2a_f0/mute.wav.npy|%s/logs/mute/2b-f0nsf/mute.wav.npy|%s"
519
- % (now_dir, sr2, now_dir, fea_dim, now_dir, now_dir, spk_id5)
520
- )
521
- else:
522
- for _ in range(2):
523
- opt.append(
524
- "%s/logs/mute/0_gt_wavs/mute%s.wav|%s/logs/mute/3_feature%s/mute.npy|%s"
525
- % (now_dir, sr2, now_dir, fea_dim, spk_id5)
526
- )
527
- shuffle(opt)
528
- with open("%s/filelist.txt" % exp_dir, "w") as f:
529
- f.write("\n".join(opt))
530
- logger.debug("Write filelist done")
531
- # 生成config#无需生成config
532
- # cmd = python_cmd + " train_nsf_sim_cache_sid_load_pretrain.py -e mi-test -sr 40k -f0 1 -bs 4 -g 0 -te 10 -se 5 -pg pretrained/f0G40k.pth -pd pretrained/f0D40k.pth -l 1 -c 0"
533
- logger.info("Use gpus: %s", str(gpus16))
534
- if pretrained_G14 == "":
535
- logger.info("No pretrained Generator")
536
- if pretrained_D15 == "":
537
- logger.info("No pretrained Discriminator")
538
- if version19 == "v1" or sr2 == "40k":
539
- config_path = "v1/%s.json" % sr2
540
- else:
541
- config_path = "v2/%s.json" % sr2
542
- config_save_path = os.path.join(exp_dir, "config.json")
543
- if not pathlib.Path(config_save_path).exists():
544
- with open(config_save_path, "w", encoding="utf-8") as f:
545
- json.dump(
546
- config.json_config[config_path],
547
- f,
548
- ensure_ascii=False,
549
- indent=4,
550
- sort_keys=True,
551
- )
552
- f.write("\n")
553
- if gpus16:
554
- cmd = (
555
- '"%s" infer/modules/train/train.py -e "%s" -sr %s -f0 %s -bs %s -g %s -te %s -se %s %s %s -l %s -c %s -sw %s -v %s'
556
- % (
557
- config.python_cmd,
558
- exp_dir1,
559
- sr2,
560
- 1 if if_f0_3 else 0,
561
- batch_size12,
562
- gpus16,
563
- total_epoch11,
564
- save_epoch10,
565
- "-pg %s" % pretrained_G14 if pretrained_G14 != "" else "",
566
- "-pd %s" % pretrained_D15 if pretrained_D15 != "" else "",
567
- 1 if if_save_latest13 == i18n("是") else 0,
568
- 1 if if_cache_gpu17 == i18n("是") else 0,
569
- 1 if if_save_every_weights18 == i18n("是") else 0,
570
- version19,
571
- )
572
- )
573
- else:
574
- cmd = (
575
- '"%s" infer/modules/train/train.py -e "%s" -sr %s -f0 %s -bs %s -te %s -se %s %s %s -l %s -c %s -sw %s -v %s'
576
- % (
577
- config.python_cmd,
578
- exp_dir1,
579
- sr2,
580
- 1 if if_f0_3 else 0,
581
- batch_size12,
582
- total_epoch11,
583
- save_epoch10,
584
- "-pg %s" % pretrained_G14 if pretrained_G14 != "" else "",
585
- "-pd %s" % pretrained_D15 if pretrained_D15 != "" else "",
586
- 1 if if_save_latest13 == i18n("是") else 0,
587
- 1 if if_cache_gpu17 == i18n("是") else 0,
588
- 1 if if_save_every_weights18 == i18n("是") else 0,
589
- version19,
590
- )
591
- )
592
- logger.info(cmd)
593
- p = Popen(cmd, shell=True, cwd=now_dir)
594
- p.wait()
595
- return "训练结束, 您可查看控制台训练日志或实验文件夹下的train.log"
596
-
597
-
598
- # but4.click(train_index, [exp_dir1], info3)
599
- def train_index(exp_dir1, version19):
600
- # exp_dir = "%s/logs/%s" % (now_dir, exp_dir1)
601
- exp_dir = "logs/%s" % (exp_dir1)
602
- os.makedirs(exp_dir, exist_ok=True)
603
- feature_dir = (
604
- "%s/3_feature256" % (exp_dir)
605
- if version19 == "v1"
606
- else "%s/3_feature768" % (exp_dir)
607
- )
608
- if not os.path.exists(feature_dir):
609
- return "请先进行特征提取!"
610
- listdir_res = list(os.listdir(feature_dir))
611
- if len(listdir_res) == 0:
612
- return "请先进行特征提取!"
613
- infos = []
614
- npys = []
615
- for name in sorted(listdir_res):
616
- phone = np.load("%s/%s" % (feature_dir, name))
617
- npys.append(phone)
618
- big_npy = np.concatenate(npys, 0)
619
- big_npy_idx = np.arange(big_npy.shape[0])
620
- np.random.shuffle(big_npy_idx)
621
- big_npy = big_npy[big_npy_idx]
622
- if big_npy.shape[0] > 2e5:
623
- infos.append("Trying doing kmeans %s shape to 10k centers." % big_npy.shape[0])
624
- yield "\n".join(infos)
625
- try:
626
- big_npy = (
627
- MiniBatchKMeans(
628
- n_clusters=10000,
629
- verbose=True,
630
- batch_size=256 * config.n_cpu,
631
- compute_labels=False,
632
- init="random",
633
- )
634
- .fit(big_npy)
635
- .cluster_centers_
636
- )
637
- except:
638
- info = traceback.format_exc()
639
- logger.info(info)
640
- infos.append(info)
641
- yield "\n".join(infos)
642
-
643
- np.save("%s/total_fea.npy" % exp_dir, big_npy)
644
- n_ivf = min(int(16 * np.sqrt(big_npy.shape[0])), big_npy.shape[0] // 39)
645
- infos.append("%s,%s" % (big_npy.shape, n_ivf))
646
- yield "\n".join(infos)
647
- index = faiss.index_factory(256 if version19 == "v1" else 768, "IVF%s,Flat" % n_ivf)
648
- # index = faiss.index_factory(256if version19=="v1"else 768, "IVF%s,PQ128x4fs,RFlat"%n_ivf)
649
- infos.append("training")
650
- yield "\n".join(infos)
651
- index_ivf = faiss.extract_index_ivf(index) #
652
- index_ivf.nprobe = 1
653
- index.train(big_npy)
654
- faiss.write_index(
655
- index,
656
- "%s/trained_IVF%s_Flat_nprobe_%s_%s_%s.index"
657
- % (exp_dir, n_ivf, index_ivf.nprobe, exp_dir1, version19),
658
- )
659
-
660
- infos.append("adding")
661
- yield "\n".join(infos)
662
- batch_size_add = 8192
663
- for i in range(0, big_npy.shape[0], batch_size_add):
664
- index.add(big_npy[i : i + batch_size_add])
665
- faiss.write_index(
666
- index,
667
- "%s/added_IVF%s_Flat_nprobe_%s_%s_%s.index"
668
- % (exp_dir, n_ivf, index_ivf.nprobe, exp_dir1, version19),
669
- )
670
- infos.append(
671
- "成功构建索引,added_IVF%s_Flat_nprobe_%s_%s_%s.index"
672
- % (n_ivf, index_ivf.nprobe, exp_dir1, version19)
673
- )
674
- # faiss.write_index(index, '%s/added_IVF%s_Flat_FastScan_%s.index'%(exp_dir,n_ivf,version19))
675
- # infos.append("成功构建索引,added_IVF%s_Flat_FastScan_%s.index"%(n_ivf,version19))
676
- yield "\n".join(infos)
677
-
678
-
679
- # but5.click(train1key, [exp_dir1, sr2, if_f0_3, trainset_dir4, spk_id5, gpus6, np7, f0method8, save_epoch10, total_epoch11, batch_size12, if_save_latest13, pretrained_G14, pretrained_D15, gpus16, if_cache_gpu17], info3)
680
- def train1key(
681
- exp_dir1,
682
- sr2,
683
- if_f0_3,
684
- trainset_dir4,
685
- spk_id5,
686
- np7,
687
- f0method8,
688
- save_epoch10,
689
- total_epoch11,
690
- batch_size12,
691
- if_save_latest13,
692
- pretrained_G14,
693
- pretrained_D15,
694
- gpus16,
695
- if_cache_gpu17,
696
- if_save_every_weights18,
697
- version19,
698
- gpus_rmvpe,
699
- ):
700
- infos = []
701
-
702
- def get_info_str(strr):
703
- infos.append(strr)
704
- return "\n".join(infos)
705
 
706
- # step1:处理数据
707
- yield get_info_str(i18n("step1:正在处理数据"))
708
- [get_info_str(_) for _ in preprocess_dataset(trainset_dir4, exp_dir1, sr2, np7)]
709
 
710
- # step2a:提取音高
711
- yield get_info_str(i18n("step2:正在提取音高&正在提取特征"))
712
- [
713
- get_info_str(_)
714
- for _ in extract_f0_feature(
715
- gpus16, np7, f0method8, if_f0_3, exp_dir1, version19, gpus_rmvpe
716
- )
717
- ]
718
-
719
- # step3a:训练模型
720
- yield get_info_str(i18n("step3a:正在训练模型"))
721
- click_train(
722
- exp_dir1,
723
- sr2,
724
- if_f0_3,
725
- spk_id5,
726
- save_epoch10,
727
- total_epoch11,
728
- batch_size12,
729
- if_save_latest13,
730
- pretrained_G14,
731
- pretrained_D15,
732
- gpus16,
733
- if_cache_gpu17,
734
- if_save_every_weights18,
735
- version19,
736
- )
737
- yield get_info_str(i18n("训练结束, 您可查看控制台训练日志或实验文件夹下的train.log"))
738
-
739
- # step3b:训练索引
740
- [get_info_str(_) for _ in train_index(exp_dir1, version19)]
741
- yield get_info_str(i18n("全流程结束!"))
742
-
743
-
744
- # ckpt_path2.change(change_info_,[ckpt_path2],[sr__,if_f0__])
745
- def change_info_(ckpt_path):
746
- if not os.path.exists(ckpt_path.replace(os.path.basename(ckpt_path), "train.log")):
747
- return {"__type__": "update"}, {"__type__": "update"}, {"__type__": "update"}
748
- try:
749
- with open(
750
- ckpt_path.replace(os.path.basename(ckpt_path), "train.log"), "r"
751
- ) as f:
752
- info = eval(f.read().strip("\n").split("\n")[0].split("\t")[-1])
753
- sr, f0 = info["sample_rate"], info["if_f0"]
754
- version = "v2" if ("version" in info and info["version"] == "v2") else "v1"
755
- return sr, str(f0), version
756
- except:
757
- traceback.print_exc()
758
- return {"__type__": "update"}, {"__type__": "update"}, {"__type__": "update"}
759
-
760
-
761
- F0GPUVisible = config.dml == False
762
-
763
-
764
- def change_f0_method(f0method8):
765
- if f0method8 == "rmvpe_gpu":
766
- visible = F0GPUVisible
767
- else:
768
- visible = False
769
- return {"visible": visible, "__type__": "update"}
770
-
771
-
772
- with gr.Blocks(title="RVC WebUI") as app:
773
- gr.Markdown("## RVC WebUI")
774
- gr.Markdown(
775
- value=i18n(
776
- "本软件以MIT协议开源, 作者不对软件具备任何控制力, 使用软件者、传播软件导出的声音者自负全责. <br>如不认可该条款, 则不能使用或引用软件包内任何代码和文件. 详见根目录<b>LICENSE</b>."
777
- )
778
- )
779
  with gr.Tabs():
780
- with gr.TabItem(i18n("模型推理")):
781
- with gr.Row():
782
- sid0 = gr.Dropdown(label=i18n("推理音色"), choices=sorted(names))
783
- with gr.Column():
784
- refresh_button = gr.Button(i18n("刷新音色列表和索引路径"), variant="primary")
785
- clean_button = gr.Button(i18n("卸载音色省显存"), variant="primary")
 
 
786
  spk_item = gr.Slider(
787
  minimum=0,
788
  maximum=2333,
@@ -792,729 +57,91 @@ with gr.Blocks(title="RVC WebUI") as app:
792
  visible=False,
793
  interactive=True,
794
  )
795
- clean_button.click(
796
- fn=clean, inputs=[], outputs=[sid0], api_name="infer_clean"
797
- )
798
- with gr.TabItem(i18n("单次推理")):
799
- with gr.Group():
800
- with gr.Row():
801
- with gr.Column():
802
- vc_transform0 = gr.Number(
803
- label=i18n("变调(整数, 半音数量, 升八度12降八度-12)"), value=0
804
- )
805
- input_audio0 = gr.Textbox(
806
- label=i18n("输入待处理音频文件路径(默认是正确格式示例)"),
807
- placeholder="C:\\Users\\Desktop\\audio_example.wav",
808
- )
809
- file_index1 = gr.Textbox(
810
- label=i18n("特征检索库文件路径,为空则使用下拉的选择结果"),
811
- placeholder="C:\\Users\\Desktop\\model_example.index",
812
- interactive=True,
813
- )
814
- file_index2 = gr.Dropdown(
815
- label=i18n("自动检测index路径,下拉式选择(dropdown)"),
816
- choices=sorted(index_paths),
817
- interactive=True,
818
- )
819
- f0method0 = gr.Radio(
820
- label=i18n(
821
- "选择音高提取算法,输入歌声可用pm提速,harvest低音好但巨慢无比,crepe效果好但吃GPU,rmvpe效果最好且微吃GPU"
822
- ),
823
- choices=["pm", "harvest", "crepe", "rmvpe"]
824
- if config.dml == False
825
- else ["pm", "harvest", "rmvpe"],
826
- value="rmvpe",
827
- interactive=True,
828
- )
829
-
830
- with gr.Column():
831
- resample_sr0 = gr.Slider(
832
- minimum=0,
833
- maximum=48000,
834
- label=i18n("后处理重采样至最终采样率,0为不进行重采样"),
835
- value=0,
836
- step=1,
837
- interactive=True,
838
- )
839
- rms_mix_rate0 = gr.Slider(
840
- minimum=0,
841
- maximum=1,
842
- label=i18n("输入源音量包络替换输出音量包络融合比例,越靠近1越使用输出包络"),
843
- value=0.25,
844
- interactive=True,
845
- )
846
- protect0 = gr.Slider(
847
- minimum=0,
848
- maximum=0.5,
849
- label=i18n(
850
- "保护清辅音和呼吸声,防止电音撕裂等artifact,拉满0.5不开启,调低加大保护力度但可能降低索引效果"
851
- ),
852
- value=0.33,
853
- step=0.01,
854
- interactive=True,
855
- )
856
- filter_radius0 = gr.Slider(
857
- minimum=0,
858
- maximum=7,
859
- label=i18n(
860
- ">=3则使用对harvest音高识别的结果使用中值滤波,数值为滤波半径,使用可以削弱哑音"
861
- ),
862
- value=3,
863
- step=1,
864
- interactive=True,
865
- )
866
- index_rate1 = gr.Slider(
867
- minimum=0,
868
- maximum=1,
869
- label=i18n("检索特征占比"),
870
- value=0.75,
871
- interactive=True,
872
- )
873
- f0_file = gr.File(
874
- label=i18n("F0曲线文件, 可选, 一行一个音高, 代替默认F0及升降调"),
875
- visible=False,
876
- )
877
-
878
- refresh_button.click(
879
- fn=change_choices,
880
- inputs=[],
881
- outputs=[sid0, file_index2],
882
- api_name="infer_refresh",
883
- )
884
- # file_big_npy1 = gr.Textbox(
885
- # label=i18n("特征文件路径"),
886
- # value="E:\\codes\py39\\vits_vc_gpu_train\\logs\\mi-test-1key\\total_fea.npy",
887
- # interactive=True,
888
- # )
889
- with gr.Group():
890
- with gr.Column():
891
- but0 = gr.Button(i18n("转换"), variant="primary")
892
- with gr.Row():
893
- vc_output1 = gr.Textbox(label=i18n("输出信息"))
894
- vc_output2 = gr.Audio(label=i18n("输出音频(右下角三个点,点了可以下载)"))
895
-
896
- but0.click(
897
- vc.vc_single,
898
- [
899
- spk_item,
900
- input_audio0,
901
- vc_transform0,
902
- f0_file,
903
- f0method0,
904
- file_index1,
905
- file_index2,
906
- # file_big_npy1,
907
- index_rate1,
908
- filter_radius0,
909
- resample_sr0,
910
- rms_mix_rate0,
911
- protect0,
912
- ],
913
- [vc_output1, vc_output2],
914
- api_name="infer_convert",
915
- )
916
- with gr.TabItem(i18n("批量推理")):
917
- gr.Markdown(
918
- value=i18n("批量转换, 输入待转换音频文件夹, 或上传多个音频文件, 在指定文件夹(默认opt)下输出转换的音频. ")
919
- )
920
- with gr.Row():
921
- with gr.Column():
922
- vc_transform1 = gr.Number(
923
- label=i18n("变调(整数, 半音数量, 升八度12降八度-12)"), value=0
924
- )
925
- opt_input = gr.Textbox(label=i18n("指定输出文件夹"), value="opt")
926
- file_index3 = gr.Textbox(
927
- label=i18n("特征检索库文件路径,为空则使用下拉的选择结果"),
928
- value="",
929
- interactive=True,
930
- )
931
- file_index4 = gr.Dropdown(
932
- label=i18n("自动检测index路径,下拉式选择(dropdown)"),
933
- choices=sorted(index_paths),
934
- interactive=True,
935
- )
936
- f0method1 = gr.Radio(
937
- label=i18n(
938
- "选择音高提取算法,输入歌声可用pm提速,harvest低音好但巨慢无比,crepe效果好但吃GPU,rmvpe效果最好且微吃GPU"
939
- ),
940
- choices=["pm", "harvest", "crepe", "rmvpe"]
941
- if config.dml == False
942
- else ["pm", "harvest", "rmvpe"],
943
- value="rmvpe",
944
- interactive=True,
945
- )
946
- format1 = gr.Radio(
947
- label=i18n("导出文件格式"),
948
- choices=["wav", "flac", "mp3", "m4a"],
949
- value="wav",
950
- interactive=True,
951
- )
952
-
953
- refresh_button.click(
954
- fn=lambda: change_choices()[1],
955
- inputs=[],
956
- outputs=file_index4,
957
- api_name="infer_refresh_batch",
958
- )
959
- # file_big_npy2 = gr.Textbox(
960
- # label=i18n("特征文件路径"),
961
- # value="E:\\codes\\py39\\vits_vc_gpu_train\\logs\\mi-test-1key\\total_fea.npy",
962
- # interactive=True,
963
- # )
964
-
965
- with gr.Column():
966
- resample_sr1 = gr.Slider(
967
- minimum=0,
968
- maximum=48000,
969
- label=i18n("后处理重采样至最终采样率,0为不进行重采样"),
970
- value=0,
971
- step=1,
972
- interactive=True,
973
- )
974
- rms_mix_rate1 = gr.Slider(
975
- minimum=0,
976
- maximum=1,
977
- label=i18n("输入源音量包络替换输出音量包络融合比例,越靠近1越使用输出包络"),
978
- value=1,
979
- interactive=True,
980
- )
981
- protect1 = gr.Slider(
982
- minimum=0,
983
- maximum=0.5,
984
- label=i18n(
985
- "保护清辅音和呼吸声,防止电音撕裂等artifact,拉满0.5不开启,调低加大保护力度但可能降低索引效果"
986
- ),
987
- value=0.33,
988
- step=0.01,
989
- interactive=True,
990
- )
991
- filter_radius1 = gr.Slider(
992
- minimum=0,
993
- maximum=7,
994
- label=i18n(">=3则使用对harvest音高识别的结果使用中值滤波,数值为滤波半径,使用可以削弱哑音"),
995
- value=3,
996
- step=1,
997
- interactive=True,
998
- )
999
- index_rate2 = gr.Slider(
1000
- minimum=0,
1001
- maximum=1,
1002
- label=i18n("检索特征占比"),
1003
- value=1,
1004
- interactive=True,
1005
- )
1006
- with gr.Row():
1007
- dir_input = gr.Textbox(
1008
- label=i18n("输入待处理音频文件夹路径(去文件管理器地址栏拷就行了)"),
1009
- placeholder="C:\\Users\\Desktop\\input_vocal_dir",
1010
- )
1011
- inputs = gr.File(
1012
- file_count="multiple", label=i18n("也可批量输入音频文件, 二选一, 优先读文件夹")
1013
- )
1014
-
1015
- with gr.Row():
1016
- but1 = gr.Button(i18n("转换"), variant="primary")
1017
- vc_output3 = gr.Textbox(label=i18n("输出信息"))
1018
-
1019
- but1.click(
1020
- vc.vc_multi,
1021
- [
1022
- spk_item,
1023
- dir_input,
1024
- opt_input,
1025
- inputs,
1026
- vc_transform1,
1027
- f0method1,
1028
- file_index3,
1029
- file_index4,
1030
- # file_big_npy2,
1031
- index_rate2,
1032
- filter_radius1,
1033
- resample_sr1,
1034
- rms_mix_rate1,
1035
- protect1,
1036
- format1,
1037
- ],
1038
- [vc_output3],
1039
- api_name="infer_convert_batch",
1040
- )
1041
- sid0.change(
1042
- fn=vc.get_vc,
1043
- inputs=[sid0, protect0, protect1],
1044
- outputs=[spk_item, protect0, protect1, file_index2, file_index4],
1045
- api_name="infer_change_voice",
1046
- )
1047
- with gr.TabItem(i18n("伴奏人声分离&去混响&去回声")):
1048
- with gr.Group():
1049
- gr.Markdown(
1050
- value=i18n(
1051
- "人声伴奏分离批量处理, 使用UVR5模型。 <br>合格的文件夹路径格式举例: E:\\codes\\py39\\vits_vc_gpu\\白鹭霜华测试样例(去文件管理器地址栏拷就行了)。 <br>模型分为三类: <br>1、保留人声:不带和声的音频选这个,对主人声保留比HP5更好。内置HP2和HP3两个模型,HP3可能轻微漏伴奏但对主人声保留比HP2稍微好一丁点; <br>2、仅保留主人声:带和声的音频选这个,对主人声可能有削弱。内置HP5一个模型; <br> 3、去混响、去延迟模型(by FoxJoy):<br>  (1)MDX-Net(onnx_dereverb):对于双通道混响是最好的选择,不能去除单通道混响;<br>&emsp;(234)DeEcho:去除延迟效果。Aggressive比Normal去除得更彻底,DeReverb额外去除混响,可去除单声道混响,但是对高频重的板式混响去不干净。<br>去混响/去延迟,附:<br>1、DeEcho-DeReverb模型的耗时是另外2个DeEcho模型的接近2倍;<br>2、MDX-Net-Dereverb模型挺慢的;<br>3、个人推荐的最干净的配置是先MDX-Net再DeEcho-Aggressive。"
1052
- )
1053
- )
1054
- with gr.Row():
1055
- with gr.Column():
1056
- dir_wav_input = gr.Textbox(
1057
- label=i18n("输入待处理音频文件夹路径"),
1058
- placeholder="C:\\Users\\Desktop\\todo-songs",
1059
- )
1060
- wav_inputs = gr.File(
1061
- file_count="multiple", label=i18n("也可批量输入音频文件, 二选一, 优先读文件夹")
1062
- )
1063
- with gr.Column():
1064
- model_choose = gr.Dropdown(label=i18n("模型"), choices=uvr5_names)
1065
- agg = gr.Slider(
1066
- minimum=0,
1067
- maximum=20,
1068
- step=1,
1069
- label="人声提取激进程度",
1070
- value=10,
1071
- interactive=True,
1072
- visible=False, # 先不开放调整
1073
- )
1074
- opt_vocal_root = gr.Textbox(
1075
- label=i18n("指定输出主人声文件夹"), value="opt"
1076
- )
1077
- opt_ins_root = gr.Textbox(
1078
- label=i18n("指定输出非主人声文件夹"), value="opt"
1079
- )
1080
- format0 = gr.Radio(
1081
- label=i18n("导出文件格式"),
1082
- choices=["wav", "flac", "mp3", "m4a"],
1083
- value="flac",
1084
- interactive=True,
1085
- )
1086
- but2 = gr.Button(i18n("转换"), variant="primary")
1087
- vc_output4 = gr.Textbox(label=i18n("输出信息"))
1088
- but2.click(
1089
- uvr,
1090
- [
1091
- model_choose,
1092
- dir_wav_input,
1093
- opt_vocal_root,
1094
- wav_inputs,
1095
- opt_ins_root,
1096
- agg,
1097
- format0,
1098
- ],
1099
- [vc_output4],
1100
- api_name="uvr_convert",
1101
- )
1102
- with gr.TabItem(i18n("训练")):
1103
  gr.Markdown(
1104
- value=i18n(
1105
- "step1: 填写实验配置. 实验数据放在logs下, 每个实验一个文件夹, 需手工输入实验名路径, 内含实验配置, 日志, 训练得到的模型文件. "
1106
- )
1107
  )
1108
- with gr.Row():
1109
- exp_dir1 = gr.Textbox(label=i18n("输入实验名"), value="mi-test")
1110
- sr2 = gr.Radio(
1111
- label=i18n("目标采样率"),
1112
- choices=["40k", "48k"],
1113
- value="40k",
1114
- interactive=True,
1115
- )
1116
- if_f0_3 = gr.Radio(
1117
- label=i18n("模型是否带音高指导(唱歌一定要, 语音可以不要)"),
1118
- choices=[True, False],
1119
- value=True,
1120
- interactive=True,
1121
- )
1122
- version19 = gr.Radio(
1123
- label=i18n("版本"),
1124
- choices=["v1", "v2"],
1125
- value="v2",
1126
- interactive=True,
1127
- visible=True,
1128
- )
1129
- np7 = gr.Slider(
1130
- minimum=0,
1131
- maximum=config.n_cpu,
1132
- step=1,
1133
- label=i18n("提取音高和处理数据使用的CPU进程数"),
1134
- value=int(np.ceil(config.n_cpu / 1.5)),
1135
- interactive=True,
1136
- )
1137
- with gr.Group(): # 暂时单人的, 后面支持最多4人的#数据处理
1138
- gr.Markdown(
1139
- value=i18n(
1140
- "step2a: 自动遍历训练文件夹下所有可解码成音频的文件并进行切片归一化, 在实验目录下生成2个wav文件夹; 暂时只支持单人训练. "
1141
- )
1142
- )
1143
- with gr.Row():
1144
- trainset_dir4 = gr.Textbox(
1145
- label=i18n("输入训练文件夹路径"), value=i18n("E:\\语音音频+标注\\米津玄师\\src")
1146
- )
1147
- spk_id5 = gr.Slider(
1148
- minimum=0,
1149
- maximum=4,
1150
- step=1,
1151
- label=i18n("请指定说话人id"),
1152
- value=0,
1153
- interactive=True,
1154
- )
1155
- but1 = gr.Button(i18n("处理数据"), variant="primary")
1156
- info1 = gr.Textbox(label=i18n("输出信息"), value="")
1157
- but1.click(
1158
- preprocess_dataset,
1159
- [trainset_dir4, exp_dir1, sr2, np7],
1160
- [info1],
1161
- api_name="train_preprocess",
1162
- )
1163
- with gr.Group():
1164
- gr.Markdown(value=i18n("step2b: 使用CPU提取音高(如果模型带音高), 使用GPU提取特征(选择卡号)"))
1165
- with gr.Row():
1166
- with gr.Column():
1167
- gpus6 = gr.Textbox(
1168
- label=i18n("以-分隔输入使用的卡号, 例如 0-1-2 使用卡0和卡1和卡2"),
1169
- value=gpus,
1170
- interactive=True,
1171
- visible=F0GPUVisible,
1172
- )
1173
- gpu_info9 = gr.Textbox(
1174
- label=i18n("显卡信息"), value=gpu_info, visible=F0GPUVisible
1175
- )
1176
- with gr.Column():
1177
- f0method8 = gr.Radio(
1178
- label=i18n(
1179
- "选择音高提取算法:输入歌声可用pm提速,高质量语音但CPU差可用dio提速,harvest质量更好但慢,rmvpe效果最好且微吃CPU/GPU"
1180
- ),
1181
- choices=["pm", "harvest", "dio", "rmvpe", "rmvpe_gpu"],
1182
- value="rmvpe_gpu",
1183
- interactive=True,
1184
- )
1185
- gpus_rmvpe = gr.Textbox(
1186
- label=i18n(
1187
- "rmvpe卡号配置:以-分隔输入使用的不同进程卡号,例如0-0-1使用在卡0上跑2个进程并在卡1上跑1个进程"
1188
- ),
1189
- value="%s-%s" % (gpus, gpus),
1190
- interactive=True,
1191
- visible=F0GPUVisible,
1192
- )
1193
- but2 = gr.Button(i18n("特征提取"), variant="primary")
1194
- info2 = gr.Textbox(label=i18n("输出信息"), value="", max_lines=8)
1195
- f0method8.change(
1196
- fn=change_f0_method,
1197
- inputs=[f0method8],
1198
- outputs=[gpus_rmvpe],
1199
- )
1200
- but2.click(
1201
- extract_f0_feature,
1202
- [
1203
- gpus6,
1204
- np7,
1205
- f0method8,
1206
- if_f0_3,
1207
- exp_dir1,
1208
- version19,
1209
- gpus_rmvpe,
1210
- ],
1211
- [info2],
1212
- api_name="train_extract_f0_feature",
1213
- )
1214
- with gr.Group():
1215
- gr.Markdown(value=i18n("step3: 填写训练设置, 开始训练模型和索引"))
1216
- with gr.Row():
1217
- save_epoch10 = gr.Slider(
1218
- minimum=1,
1219
- maximum=50,
1220
- step=1,
1221
- label=i18n("保存频率save_every_epoch"),
1222
- value=5,
1223
- interactive=True,
1224
- )
1225
- total_epoch11 = gr.Slider(
1226
- minimum=2,
1227
- maximum=1000,
1228
- step=1,
1229
- label=i18n("总训练轮数total_epoch"),
1230
- value=20,
1231
- interactive=True,
1232
- )
1233
- batch_size12 = gr.Slider(
1234
- minimum=1,
1235
- maximum=40,
1236
- step=1,
1237
- label=i18n("每张显卡的batch_size"),
1238
- value=default_batch_size,
1239
- interactive=True,
1240
- )
1241
- if_save_latest13 = gr.Radio(
1242
- label=i18n("是否仅保存最新的ckpt文件以节省硬盘空间"),
1243
- choices=[i18n("是"), i18n("否")],
1244
- value=i18n("否"),
1245
- interactive=True,
1246
- )
1247
- if_cache_gpu17 = gr.Radio(
1248
- label=i18n(
1249
- "是否缓存所有训练集至显存. 10min以下小数据可缓存以加速训练, 大数据缓存会炸显存也加不了多少速"
1250
- ),
1251
- choices=[i18n("是"), i18n("否")],
1252
- value=i18n("否"),
1253
- interactive=True,
1254
- )
1255
- if_save_every_weights18 = gr.Radio(
1256
- label=i18n("是否在每次保存时间点将最终小模型保存至weights文件夹"),
1257
- choices=[i18n("是"), i18n("否")],
1258
- value=i18n("否"),
1259
- interactive=True,
1260
- )
1261
- with gr.Row():
1262
- pretrained_G14 = gr.Textbox(
1263
- label=i18n("加载预训练底模G路径"),
1264
- value="assets/pretrained_v2/f0G40k.pth",
1265
- interactive=True,
1266
- )
1267
- pretrained_D15 = gr.Textbox(
1268
- label=i18n("加载预训练底模D路径"),
1269
- value="assets/pretrained_v2/f0D40k.pth",
1270
- interactive=True,
1271
- )
1272
- sr2.change(
1273
- change_sr2,
1274
- [sr2, if_f0_3, version19],
1275
- [pretrained_G14, pretrained_D15],
1276
- )
1277
- version19.change(
1278
- change_version19,
1279
- [sr2, if_f0_3, version19],
1280
- [pretrained_G14, pretrained_D15, sr2],
1281
- )
1282
- if_f0_3.change(
1283
- change_f0,
1284
- [if_f0_3, sr2, version19],
1285
- [f0method8, gpus_rmvpe, pretrained_G14, pretrained_D15],
1286
- )
1287
- gpus16 = gr.Textbox(
1288
- label=i18n("以-分隔输入使用的卡号, 例如 0-1-2 使用卡0和卡1和卡2"),
1289
- value=gpus,
1290
- interactive=True,
1291
- )
1292
- but3 = gr.Button(i18n("训练模型"), variant="primary")
1293
- but4 = gr.Button(i18n("训练特征索引"), variant="primary")
1294
- but5 = gr.Button(i18n("一键训练"), variant="primary")
1295
- info3 = gr.Textbox(label=i18n("输出信息"), value="", max_lines=10)
1296
- but3.click(
1297
- click_train,
1298
- [
1299
- exp_dir1,
1300
- sr2,
1301
- if_f0_3,
1302
- spk_id5,
1303
- save_epoch10,
1304
- total_epoch11,
1305
- batch_size12,
1306
- if_save_latest13,
1307
- pretrained_G14,
1308
- pretrained_D15,
1309
- gpus16,
1310
- if_cache_gpu17,
1311
- if_save_every_weights18,
1312
- version19,
1313
- ],
1314
- info3,
1315
- api_name="train_start",
1316
- )
1317
- but4.click(train_index, [exp_dir1, version19], info3)
1318
- but5.click(
1319
- train1key,
1320
- [
1321
- exp_dir1,
1322
- sr2,
1323
- if_f0_3,
1324
- trainset_dir4,
1325
- spk_id5,
1326
- np7,
1327
- f0method8,
1328
- save_epoch10,
1329
- total_epoch11,
1330
- batch_size12,
1331
- if_save_latest13,
1332
- pretrained_G14,
1333
- pretrained_D15,
1334
- gpus16,
1335
- if_cache_gpu17,
1336
- if_save_every_weights18,
1337
- version19,
1338
- gpus_rmvpe,
1339
- ],
1340
- info3,
1341
- api_name="train_start_all",
1342
- )
1343
-
1344
- with gr.TabItem(i18n("ckpt处理")):
1345
- with gr.Group():
1346
- gr.Markdown(value=i18n("模型融合, 可用于测试音色融合"))
1347
- with gr.Row():
1348
- ckpt_a = gr.Textbox(label=i18n("A模型路径"), value="", interactive=True)
1349
- ckpt_b = gr.Textbox(label=i18n("B模型路径"), value="", interactive=True)
1350
- alpha_a = gr.Slider(
1351
- minimum=0,
1352
- maximum=1,
1353
- label=i18n("A模型权重"),
1354
- value=0.5,
1355
- interactive=True,
1356
- )
1357
- with gr.Row():
1358
- sr_ = gr.Radio(
1359
- label=i18n("目标采样率"),
1360
- choices=["40k", "48k"],
1361
- value="40k",
1362
- interactive=True,
1363
- )
1364
- if_f0_ = gr.Radio(
1365
- label=i18n("模型是否带音高指导"),
1366
- choices=[i18n("是"), i18n("否")],
1367
- value=i18n("是"),
1368
- interactive=True,
1369
- )
1370
- info__ = gr.Textbox(
1371
- label=i18n("要置入的模型信息"), value="", max_lines=8, interactive=True
1372
- )
1373
- name_to_save0 = gr.Textbox(
1374
- label=i18n("保存的模型名不带后缀"),
1375
- value="",
1376
- max_lines=1,
1377
- interactive=True,
1378
- )
1379
- version_2 = gr.Radio(
1380
- label=i18n("模型版本型号"),
1381
- choices=["v1", "v2"],
1382
- value="v1",
1383
- interactive=True,
1384
- )
1385
- with gr.Row():
1386
- but6 = gr.Button(i18n("融合"), variant="primary")
1387
- info4 = gr.Textbox(label=i18n("输出信息"), value="", max_lines=8)
1388
- but6.click(
1389
- merge,
1390
- [
1391
- ckpt_a,
1392
- ckpt_b,
1393
- alpha_a,
1394
- sr_,
1395
- if_f0_,
1396
- info__,
1397
- name_to_save0,
1398
- version_2,
1399
- ],
1400
- info4,
1401
- api_name="ckpt_merge",
1402
- ) # def merge(path1,path2,alpha1,sr,f0,info):
1403
- with gr.Group():
1404
- gr.Markdown(value=i18n("修改模型信息(仅支持weights文件夹下提取的小模型文件)"))
1405
- with gr.Row():
1406
- ckpt_path0 = gr.Textbox(
1407
- label=i18n("模型路径"), value="", interactive=True
1408
- )
1409
- info_ = gr.Textbox(
1410
- label=i18n("要改的模型信息"), value="", max_lines=8, interactive=True
1411
- )
1412
- name_to_save1 = gr.Textbox(
1413
- label=i18n("保存的文件名, 默认空为和源文件同名"),
1414
- value="",
1415
- max_lines=8,
1416
- interactive=True,
1417
- )
1418
- with gr.Row():
1419
- but7 = gr.Button(i18n("修改"), variant="primary")
1420
- info5 = gr.Textbox(label=i18n("输出信息"), value="", max_lines=8)
1421
- but7.click(
1422
- change_info,
1423
- [ckpt_path0, info_, name_to_save1],
1424
- info5,
1425
- api_name="ckpt_modify",
1426
- )
1427
- with gr.Group():
1428
- gr.Markdown(value=i18n("查看模型信息(仅支持weights文件夹下提取的小模型文件)"))
1429
- with gr.Row():
1430
- ckpt_path1 = gr.Textbox(
1431
- label=i18n("模型路径"), value="", interactive=True
1432
- )
1433
- but8 = gr.Button(i18n("查看"), variant="primary")
1434
- info6 = gr.Textbox(label=i18n("输出信息"), value="", max_lines=8)
1435
- but8.click(show_info, [ckpt_path1], info6, api_name="ckpt_show")
1436
- with gr.Group():
1437
- gr.Markdown(
1438
- value=i18n(
1439
- "模型提取(输入logs文件夹下大文件模型路径),适用于训一半不想训了模型没有自动提取保存小文件模型,或者想测试中间模型的情况"
1440
- )
1441
- )
1442
- with gr.Row():
1443
- ckpt_path2 = gr.Textbox(
1444
- label=i18n("模型路径"),
1445
- value="E:\\codes\\py39\\logs\\mi-test_f0_48k\\G_23333.pth",
1446
- interactive=True,
1447
- )
1448
- save_name = gr.Textbox(
1449
- label=i18n("保存名"), value="", interactive=True
1450
- )
1451
- sr__ = gr.Radio(
1452
- label=i18n("目标采样率"),
1453
- choices=["32k", "40k", "48k"],
1454
- value="40k",
1455
- interactive=True,
1456
- )
1457
- if_f0__ = gr.Radio(
1458
- label=i18n("模型是否带音高指导,1是0否"),
1459
- choices=["1", "0"],
1460
- value="1",
1461
- interactive=True,
1462
- )
1463
- version_1 = gr.Radio(
1464
- label=i18n("模型版本型号"),
1465
- choices=["v1", "v2"],
1466
- value="v2",
1467
- interactive=True,
1468
- )
1469
- info___ = gr.Textbox(
1470
- label=i18n("要置入的模型信息"), value="", max_lines=8, interactive=True
1471
- )
1472
- but9 = gr.Button(i18n("提取"), variant="primary")
1473
- info7 = gr.Textbox(label=i18n("输出信息"), value="", max_lines=8)
1474
- ckpt_path2.change(
1475
- change_info_, [ckpt_path2], [sr__, if_f0__, version_1]
1476
- )
1477
- but9.click(
1478
- extract_small_model,
1479
- [ckpt_path2, save_name, sr__, if_f0__, info___, version_1],
1480
- info7,
1481
- api_name="ckpt_extract",
1482
- )
1483
-
1484
- with gr.TabItem(i18n("Onnx导出")):
1485
- with gr.Row():
1486
- ckpt_dir = gr.Textbox(label=i18n("RVC模型路径"), value="", interactive=True)
1487
- with gr.Row():
1488
- onnx_dir = gr.Textbox(
1489
- label=i18n("Onnx输出路径"), value="", interactive=True
1490
  )
1491
- with gr.Row():
1492
- infoOnnx = gr.Label(label="info")
1493
- with gr.Row():
1494
- butOnnx = gr.Button(i18n("导出Onnx模型"), variant="primary")
1495
- butOnnx.click(
1496
- export_onnx, [ckpt_dir, onnx_dir], infoOnnx, api_name="export_onnx"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1497
  )
1498
 
1499
- tab_faq = i18n("常见问题解答")
1500
- with gr.TabItem(tab_faq):
1501
- try:
1502
- if tab_faq == "常见问题解答":
1503
- with open("docs/cn/faq.md", "r", encoding="utf8") as f:
1504
- info = f.read()
1505
- else:
1506
- with open("docs/en/faq_en.md", "r", encoding="utf8") as f:
1507
- info = f.read()
1508
- gr.Markdown(value=info)
1509
- except:
1510
- gr.Markdown(traceback.format_exc())
1511
 
1512
- if config.iscolab:
1513
- app.queue(concurrency_count=511, max_size=1022).launch(share=True)
1514
- else:
1515
- app.queue(concurrency_count=511, max_size=1022).launch(
1516
- server_name="0.0.0.0",
1517
- inbrowser=not config.noautoopen,
1518
- server_port=config.listen_port,
1519
- quiet=True,
1520
- )
 
1
+ import logging
2
  import os
 
 
3
 
4
+ # os.system("wget -P cvec/ https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/hubert_base.pt")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
  import gradio as gr
6
+ from dotenv import load_dotenv
 
 
 
 
 
 
 
 
 
 
 
7
 
8
+ from configs.config import Config
9
+ from i18n.i18n import I18nAuto
10
+ from infer.modules.vc.modules import VC
11
 
12
  logging.getLogger("numba").setLevel(logging.WARNING)
13
+ logging.getLogger("markdown_it").setLevel(logging.WARNING)
14
+ logging.getLogger("urllib3").setLevel(logging.WARNING)
15
+ logging.getLogger("matplotlib").setLevel(logging.WARNING)
16
  logger = logging.getLogger(__name__)
17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18
  i18n = I18nAuto()
19
  logger.info(i18n)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20
 
21
+ load_dotenv()
22
+ config = Config()
23
+ vc = VC(config)
24
 
25
  weight_root = os.getenv("weight_root")
26
  weight_uvr5_root = os.getenv("weight_uvr5_root")
27
  index_root = os.getenv("index_root")
 
28
  names = []
29
+ hubert_model = None
30
  for name in os.listdir(weight_root):
31
  if name.endswith(".pth"):
32
  names.append(name)
 
35
  for name in files:
36
  if name.endswith(".index") and "trained" not in name:
37
  index_paths.append("%s/%s" % (root, name))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38
 
 
 
 
39
 
40
+ app = gr.Blocks()
41
+ with app:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42
  with gr.Tabs():
43
+ with gr.TabItem("在线demo"):
44
+ gr.Markdown(
45
+ value="""
46
+ RVC 在线demo
47
+ """
48
+ )
49
+ sid = gr.Dropdown(label=i18n("推理音色"), choices=sorted(names))
50
+ with gr.Column():
51
  spk_item = gr.Slider(
52
  minimum=0,
53
  maximum=2333,
 
57
  visible=False,
58
  interactive=True,
59
  )
60
+ sid.change(fn=vc.get_vc, inputs=[sid], outputs=[spk_item])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61
  gr.Markdown(
62
+ value=i18n("男转女推荐+12key, 女转男推荐-12key, 如果音域爆炸导致音色失真也可以自己调整到合适音域. ")
 
 
63
  )
64
+ vc_input3 = gr.Audio(label="上传音频(长度小于90秒)")
65
+ vc_transform0 = gr.Number(label=i18n("变调(整数, 半音数量, 升八度12降八度-12)"), value=0)
66
+ f0method0 = gr.Radio(
67
+ label=i18n("选择音高提取算法,输入歌声可用pm提速,harvest低音好但巨慢无比,crepe效果好但吃GPU"),
68
+ choices=["pm", "harvest", "crepe", "rmvpe"],
69
+ value="pm",
70
+ interactive=True,
71
+ )
72
+ filter_radius0 = gr.Slider(
73
+ minimum=0,
74
+ maximum=7,
75
+ label=i18n(">=3则使用对harvest音高识别的结果使用中值滤波,数值为滤波半径,使用可以削弱哑音"),
76
+ value=3,
77
+ step=1,
78
+ interactive=True,
79
+ )
80
+ with gr.Column():
81
+ file_index1 = gr.Textbox(
82
+ label=i18n("特征检索库文件路径,为空则使用下拉的选择结果"),
83
+ value="",
84
+ interactive=False,
85
+ visible=False,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
86
  )
87
+ file_index2 = gr.Dropdown(
88
+ label=i18n("自动检测index路径,下拉式选择(dropdown)"),
89
+ choices=sorted(index_paths),
90
+ interactive=True,
91
+ )
92
+ index_rate1 = gr.Slider(
93
+ minimum=0,
94
+ maximum=1,
95
+ label=i18n("检索特征占比"),
96
+ value=0.88,
97
+ interactive=True,
98
+ )
99
+ resample_sr0 = gr.Slider(
100
+ minimum=0,
101
+ maximum=48000,
102
+ label=i18n("后处理重采样至最终采样率,0为不进行重采样"),
103
+ value=0,
104
+ step=1,
105
+ interactive=True,
106
+ )
107
+ rms_mix_rate0 = gr.Slider(
108
+ minimum=0,
109
+ maximum=1,
110
+ label=i18n("输入源音量包络替换输出音量包络融合比例,越靠近1越使用输出包络"),
111
+ value=1,
112
+ interactive=True,
113
+ )
114
+ protect0 = gr.Slider(
115
+ minimum=0,
116
+ maximum=0.5,
117
+ label=i18n("保护清辅音和呼吸声,防止电音撕裂等artifact,拉满0.5不开启,调低加大保护力度但可能降低索引效果"),
118
+ value=0.33,
119
+ step=0.01,
120
+ interactive=True,
121
+ )
122
+ f0_file = gr.File(label=i18n("F0曲线文件, 可选, 一行一个音高, 代替默认F0及升降调"))
123
+ but0 = gr.Button(i18n("转换"), variant="primary")
124
+ vc_output1 = gr.Textbox(label=i18n("输出信息"))
125
+ vc_output2 = gr.Audio(label=i18n("输出音频(右下角三个点,点了可以下载)"))
126
+ but0.click(
127
+ vc.vc_single,
128
+ [
129
+ spk_item,
130
+ vc_input3,
131
+ vc_transform0,
132
+ f0_file,
133
+ f0method0,
134
+ file_index1,
135
+ file_index2,
136
+ # file_big_npy1,
137
+ index_rate1,
138
+ filter_radius0,
139
+ resample_sr0,
140
+ rms_mix_rate0,
141
+ protect0,
142
+ ],
143
+ [vc_output1, vc_output2],
144
  )
145
 
 
 
 
 
 
 
 
 
 
 
 
 
146
 
147
+ app.launch()