Spaces:
Runtime error
Runtime error
import os, sys | |
if sys.platform == "darwin": | |
os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1" | |
now_dir = os.getcwd() | |
sys.path.append(now_dir) | |
import multiprocessing | |
class Harvest(multiprocessing.Process): | |
def __init__(self, inp_q, opt_q): | |
multiprocessing.Process.__init__(self) | |
self.inp_q = inp_q | |
self.opt_q = opt_q | |
def run(self): | |
import numpy as np, pyworld | |
while 1: | |
idx, x, res_f0, n_cpu, ts = self.inp_q.get() | |
f0, t = pyworld.harvest( | |
x.astype(np.double), | |
fs=16000, | |
f0_ceil=1100, | |
f0_floor=50, | |
frame_period=10, | |
) | |
res_f0[idx] = f0 | |
if len(res_f0.keys()) >= n_cpu: | |
self.opt_q.put(ts) | |
if __name__ == "__main__": | |
from multiprocessing import Queue | |
from queue import Empty | |
import numpy as np | |
import multiprocessing | |
import traceback, re | |
import json | |
import PySimpleGUI as sg | |
import sounddevice as sd | |
import noisereduce as nr | |
from multiprocessing import cpu_count | |
import librosa, torch, time, threading | |
import torch.nn.functional as F | |
import torchaudio.transforms as tat | |
from i18n import I18nAuto | |
i18n = I18nAuto() | |
device = torch.device( | |
"cuda" | |
if torch.cuda.is_available() | |
else ("mps" if torch.backends.mps.is_available() else "cpu") | |
) | |
current_dir = os.getcwd() | |
inp_q = Queue() | |
opt_q = Queue() | |
n_cpu = min(cpu_count(), 8) | |
for _ in range(n_cpu): | |
Harvest(inp_q, opt_q).start() | |
from rvc_for_realtime import RVC | |
class GUIConfig: | |
def __init__(self) -> None: | |
self.pth_path: str = "" | |
self.index_path: str = "" | |
self.pitch: int = 12 | |
self.samplerate: int = 40000 | |
self.block_time: float = 1.0 # s | |
self.buffer_num: int = 1 | |
self.threhold: int = -30 | |
self.crossfade_time: float = 0.08 | |
self.extra_time: float = 0.04 | |
self.I_noise_reduce = False | |
self.O_noise_reduce = False | |
self.index_rate = 0.3 | |
self.n_cpu = min(n_cpu, 8) | |
self.f0method = "harvest" | |
class GUI: | |
def __init__(self) -> None: | |
self.config = GUIConfig() | |
self.flag_vc = False | |
self.launcher() | |
def load(self): | |
input_devices, output_devices, _, _ = self.get_devices() | |
try: | |
with open("values1.json", "r") as j: | |
data = json.load(j) | |
data["pm"] = data["f0method"] == "pm" | |
data["harvest"] = data["f0method"] == "harvest" | |
data["crepe"] = data["f0method"] == "crepe" | |
data["rmvpe"] = data["f0method"] == "rmvpe" | |
except: | |
with open("values1.json", "w") as j: | |
data = { | |
"pth_path": " ", | |
"index_path": " ", | |
"sg_input_device": input_devices[sd.default.device[0]], | |
"sg_output_device": output_devices[sd.default.device[1]], | |
"threhold": "-45", | |
"pitch": "0", | |
"index_rate": "0", | |
"block_time": "1", | |
"crossfade_length": "0.04", | |
"extra_time": "1", | |
"f0method": "rmvpe", | |
} | |
return data | |
def launcher(self): | |
data = self.load() | |
sg.theme("LightBlue3") | |
input_devices, output_devices, _, _ = self.get_devices() | |
layout = [ | |
[ | |
sg.Frame( | |
title=i18n("加载模型"), | |
layout=[ | |
[ | |
sg.Input( | |
default_text=data.get("pth_path", ""), | |
key="pth_path", | |
), | |
sg.FileBrowse( | |
i18n("选择.pth文件"), | |
initial_folder=os.path.join(os.getcwd(), "weights"), | |
file_types=((". pth"),), | |
), | |
], | |
[ | |
sg.Input( | |
default_text=data.get("index_path", ""), | |
key="index_path", | |
), | |
sg.FileBrowse( | |
i18n("选择.index文件"), | |
initial_folder=os.path.join(os.getcwd(), "logs"), | |
file_types=((". index"),), | |
), | |
], | |
], | |
) | |
], | |
[ | |
sg.Frame( | |
layout=[ | |
[ | |
sg.Text(i18n("输入设备")), | |
sg.Combo( | |
input_devices, | |
key="sg_input_device", | |
default_value=data.get("sg_input_device", ""), | |
), | |
], | |
[ | |
sg.Text(i18n("输出设备")), | |
sg.Combo( | |
output_devices, | |
key="sg_output_device", | |
default_value=data.get("sg_output_device", ""), | |
), | |
], | |
], | |
title=i18n("音频设备(请使用同种类驱动)"), | |
) | |
], | |
[ | |
sg.Frame( | |
layout=[ | |
[ | |
sg.Text(i18n("响应阈值")), | |
sg.Slider( | |
range=(-60, 0), | |
key="threhold", | |
resolution=1, | |
orientation="h", | |
default_value=data.get("threhold", ""), | |
), | |
], | |
[ | |
sg.Text(i18n("音调设置")), | |
sg.Slider( | |
range=(-24, 24), | |
key="pitch", | |
resolution=1, | |
orientation="h", | |
default_value=data.get("pitch", ""), | |
), | |
], | |
[ | |
sg.Text(i18n("Index Rate")), | |
sg.Slider( | |
range=(0.0, 1.0), | |
key="index_rate", | |
resolution=0.01, | |
orientation="h", | |
default_value=data.get("index_rate", ""), | |
), | |
], | |
[ | |
sg.Text(i18n("音高算法")), | |
sg.Radio( | |
"pm", | |
"f0method", | |
key="pm", | |
default=data.get("pm", "") == True, | |
), | |
sg.Radio( | |
"harvest", | |
"f0method", | |
key="harvest", | |
default=data.get("harvest", "") == True, | |
), | |
sg.Radio( | |
"crepe", | |
"f0method", | |
key="crepe", | |
default=data.get("crepe", "") == True, | |
), | |
sg.Radio( | |
"rmvpe", | |
"f0method", | |
key="rmvpe", | |
default=data.get("rmvpe", "") == True, | |
), | |
], | |
], | |
title=i18n("常规设置"), | |
), | |
sg.Frame( | |
layout=[ | |
[ | |
sg.Text(i18n("采样长度")), | |
sg.Slider( | |
range=(0.12, 2.4), | |
key="block_time", | |
resolution=0.03, | |
orientation="h", | |
default_value=data.get("block_time", ""), | |
), | |
], | |
[ | |
sg.Text(i18n("harvest进程数")), | |
sg.Slider( | |
range=(1, n_cpu), | |
key="n_cpu", | |
resolution=1, | |
orientation="h", | |
default_value=data.get( | |
"n_cpu", min(self.config.n_cpu, n_cpu) | |
), | |
), | |
], | |
[ | |
sg.Text(i18n("淡入淡出长度")), | |
sg.Slider( | |
range=(0.01, 0.15), | |
key="crossfade_length", | |
resolution=0.01, | |
orientation="h", | |
default_value=data.get("crossfade_length", ""), | |
), | |
], | |
[ | |
sg.Text(i18n("额外推理时长")), | |
sg.Slider( | |
range=(0.05, 3.00), | |
key="extra_time", | |
resolution=0.01, | |
orientation="h", | |
default_value=data.get("extra_time", ""), | |
), | |
], | |
[ | |
sg.Checkbox(i18n("输入降噪"), key="I_noise_reduce"), | |
sg.Checkbox(i18n("输出降噪"), key="O_noise_reduce"), | |
], | |
], | |
title=i18n("性能设置"), | |
), | |
], | |
[ | |
sg.Button(i18n("开始音频转换"), key="start_vc"), | |
sg.Button(i18n("停止音频转换"), key="stop_vc"), | |
sg.Text(i18n("推理时间(ms):")), | |
sg.Text("0", key="infer_time"), | |
], | |
] | |
self.window = sg.Window("RVC - GUI", layout=layout) | |
self.event_handler() | |
def event_handler(self): | |
while True: | |
event, values = self.window.read() | |
if event == sg.WINDOW_CLOSED: | |
self.flag_vc = False | |
exit() | |
if event == "start_vc" and self.flag_vc == False: | |
if self.set_values(values) == True: | |
print("using_cuda:" + str(torch.cuda.is_available())) | |
self.start_vc() | |
settings = { | |
"pth_path": values["pth_path"], | |
"index_path": values["index_path"], | |
"sg_input_device": values["sg_input_device"], | |
"sg_output_device": values["sg_output_device"], | |
"threhold": values["threhold"], | |
"pitch": values["pitch"], | |
"index_rate": values["index_rate"], | |
"block_time": values["block_time"], | |
"crossfade_length": values["crossfade_length"], | |
"extra_time": values["extra_time"], | |
"n_cpu": values["n_cpu"], | |
"f0method": ["pm", "harvest", "crepe", "rmvpe"][ | |
[ | |
values["pm"], | |
values["harvest"], | |
values["crepe"], | |
values["rmvpe"], | |
].index(True) | |
], | |
} | |
with open("values1.json", "w") as j: | |
json.dump(settings, j) | |
if event == "stop_vc" and self.flag_vc == True: | |
self.flag_vc = False | |
def set_values(self, values): | |
if len(values["pth_path"].strip()) == 0: | |
sg.popup(i18n("请选择pth文件")) | |
return False | |
if len(values["index_path"].strip()) == 0: | |
sg.popup(i18n("请选择index文件")) | |
return False | |
pattern = re.compile("[^\x00-\x7F]+") | |
if pattern.findall(values["pth_path"]): | |
sg.popup(i18n("pth文件路径不可包含中文")) | |
return False | |
if pattern.findall(values["index_path"]): | |
sg.popup(i18n("index文件路径不可包含中文")) | |
return False | |
self.set_devices(values["sg_input_device"], values["sg_output_device"]) | |
self.config.pth_path = values["pth_path"] | |
self.config.index_path = values["index_path"] | |
self.config.threhold = values["threhold"] | |
self.config.pitch = values["pitch"] | |
self.config.block_time = values["block_time"] | |
self.config.crossfade_time = values["crossfade_length"] | |
self.config.extra_time = values["extra_time"] | |
self.config.I_noise_reduce = values["I_noise_reduce"] | |
self.config.O_noise_reduce = values["O_noise_reduce"] | |
self.config.index_rate = values["index_rate"] | |
self.config.n_cpu = values["n_cpu"] | |
self.config.f0method = ["pm", "harvest", "crepe", "rmvpe"][ | |
[ | |
values["pm"], | |
values["harvest"], | |
values["crepe"], | |
values["rmvpe"], | |
].index(True) | |
] | |
return True | |
def start_vc(self): | |
torch.cuda.empty_cache() | |
self.flag_vc = True | |
self.rvc = RVC( | |
self.config.pitch, | |
self.config.pth_path, | |
self.config.index_path, | |
self.config.index_rate, | |
self.config.n_cpu, | |
inp_q, | |
opt_q, | |
device, | |
) | |
self.config.samplerate = self.rvc.tgt_sr | |
self.config.crossfade_time = min( | |
self.config.crossfade_time, self.config.block_time | |
) | |
self.block_frame = int(self.config.block_time * self.config.samplerate) | |
self.crossfade_frame = int( | |
self.config.crossfade_time * self.config.samplerate | |
) | |
self.sola_search_frame = int(0.01 * self.config.samplerate) | |
self.extra_frame = int(self.config.extra_time * self.config.samplerate) | |
self.zc = self.rvc.tgt_sr // 100 | |
self.input_wav: np.ndarray = np.zeros( | |
int( | |
np.ceil( | |
( | |
self.extra_frame | |
+ self.crossfade_frame | |
+ self.sola_search_frame | |
+ self.block_frame | |
) | |
/ self.zc | |
) | |
* self.zc | |
), | |
dtype="float32", | |
) | |
self.output_wav_cache: torch.Tensor = torch.zeros( | |
int( | |
np.ceil( | |
( | |
self.extra_frame | |
+ self.crossfade_frame | |
+ self.sola_search_frame | |
+ self.block_frame | |
) | |
/ self.zc | |
) | |
* self.zc | |
), | |
device=device, | |
dtype=torch.float32, | |
) | |
self.pitch: np.ndarray = np.zeros( | |
self.input_wav.shape[0] // self.zc, | |
dtype="int32", | |
) | |
self.pitchf: np.ndarray = np.zeros( | |
self.input_wav.shape[0] // self.zc, | |
dtype="float64", | |
) | |
self.output_wav: torch.Tensor = torch.zeros( | |
self.block_frame, device=device, dtype=torch.float32 | |
) | |
self.sola_buffer: torch.Tensor = torch.zeros( | |
self.crossfade_frame, device=device, dtype=torch.float32 | |
) | |
self.fade_in_window: torch.Tensor = torch.linspace( | |
0.0, 1.0, steps=self.crossfade_frame, device=device, dtype=torch.float32 | |
) | |
self.fade_out_window: torch.Tensor = 1 - self.fade_in_window | |
self.resampler = tat.Resample( | |
orig_freq=self.config.samplerate, new_freq=16000, dtype=torch.float32 | |
).to(device) | |
thread_vc = threading.Thread(target=self.soundinput) | |
thread_vc.start() | |
def soundinput(self): | |
""" | |
接受音频输入 | |
""" | |
channels = 1 if sys.platform == "darwin" else 2 | |
with sd.Stream( | |
channels=channels, | |
callback=self.audio_callback, | |
blocksize=self.block_frame, | |
samplerate=self.config.samplerate, | |
dtype="float32", | |
): | |
while self.flag_vc: | |
time.sleep(self.config.block_time) | |
print("Audio block passed.") | |
print("ENDing VC") | |
def audio_callback( | |
self, indata: np.ndarray, outdata: np.ndarray, frames, times, status | |
): | |
""" | |
音频处理 | |
""" | |
start_time = time.perf_counter() | |
indata = librosa.to_mono(indata.T) | |
if self.config.I_noise_reduce: | |
indata[:] = nr.reduce_noise(y=indata, sr=self.config.samplerate) | |
"""noise gate""" | |
frame_length = 2048 | |
hop_length = 1024 | |
rms = librosa.feature.rms( | |
y=indata, frame_length=frame_length, hop_length=hop_length | |
) | |
if self.config.threhold > -60: | |
db_threhold = ( | |
librosa.amplitude_to_db(rms, ref=1.0)[0] < self.config.threhold | |
) | |
for i in range(db_threhold.shape[0]): | |
if db_threhold[i]: | |
indata[i * hop_length : (i + 1) * hop_length] = 0 | |
self.input_wav[:] = np.append(self.input_wav[self.block_frame :], indata) | |
# infer | |
inp = torch.from_numpy(self.input_wav).to(device) | |
##0 | |
res1 = self.resampler(inp) | |
###55% | |
rate1 = self.block_frame / ( | |
self.extra_frame | |
+ self.crossfade_frame | |
+ self.sola_search_frame | |
+ self.block_frame | |
) | |
rate2 = ( | |
self.crossfade_frame + self.sola_search_frame + self.block_frame | |
) / ( | |
self.extra_frame | |
+ self.crossfade_frame | |
+ self.sola_search_frame | |
+ self.block_frame | |
) | |
res2 = self.rvc.infer( | |
res1, | |
res1[-self.block_frame :].cpu().numpy(), | |
rate1, | |
rate2, | |
self.pitch, | |
self.pitchf, | |
self.config.f0method, | |
) | |
self.output_wav_cache[-res2.shape[0] :] = res2 | |
infer_wav = self.output_wav_cache[ | |
-self.crossfade_frame - self.sola_search_frame - self.block_frame : | |
] | |
# SOLA algorithm from https://github.com/yxlllc/DDSP-SVC | |
cor_nom = F.conv1d( | |
infer_wav[None, None, : self.crossfade_frame + self.sola_search_frame], | |
self.sola_buffer[None, None, :], | |
) | |
cor_den = torch.sqrt( | |
F.conv1d( | |
infer_wav[ | |
None, None, : self.crossfade_frame + self.sola_search_frame | |
] | |
** 2, | |
torch.ones(1, 1, self.crossfade_frame, device=device), | |
) | |
+ 1e-8 | |
) | |
if sys.platform == "darwin": | |
cor_nom = cor_nom.cpu() | |
cor_den = cor_den.cpu() | |
sola_offset = torch.argmax(cor_nom[0, 0] / cor_den[0, 0]) | |
print("sola offset: " + str(int(sola_offset))) | |
self.output_wav[:] = infer_wav[sola_offset : sola_offset + self.block_frame] | |
self.output_wav[: self.crossfade_frame] *= self.fade_in_window | |
self.output_wav[: self.crossfade_frame] += self.sola_buffer[:] | |
# crossfade | |
if sola_offset < self.sola_search_frame: | |
self.sola_buffer[:] = ( | |
infer_wav[ | |
-self.sola_search_frame | |
- self.crossfade_frame | |
+ sola_offset : -self.sola_search_frame | |
+ sola_offset | |
] | |
* self.fade_out_window | |
) | |
else: | |
self.sola_buffer[:] = ( | |
infer_wav[-self.crossfade_frame :] * self.fade_out_window | |
) | |
if self.config.O_noise_reduce: | |
if sys.platform == "darwin": | |
noise_reduced_signal = nr.reduce_noise( | |
y=self.output_wav[:].cpu().numpy(), sr=self.config.samplerate | |
) | |
outdata[:] = noise_reduced_signal[:, np.newaxis] | |
else: | |
outdata[:] = np.tile( | |
nr.reduce_noise( | |
y=self.output_wav[:].cpu().numpy(), | |
sr=self.config.samplerate, | |
), | |
(2, 1), | |
).T | |
else: | |
if sys.platform == "darwin": | |
outdata[:] = self.output_wav[:].cpu().numpy()[:, np.newaxis] | |
else: | |
outdata[:] = self.output_wav[:].repeat(2, 1).t().cpu().numpy() | |
total_time = time.perf_counter() - start_time | |
self.window["infer_time"].update(int(total_time * 1000)) | |
print("infer time:" + str(total_time)) | |
def get_devices(self, update: bool = True): | |
"""获取设备列表""" | |
if update: | |
sd._terminate() | |
sd._initialize() | |
devices = sd.query_devices() | |
hostapis = sd.query_hostapis() | |
for hostapi in hostapis: | |
for device_idx in hostapi["devices"]: | |
devices[device_idx]["hostapi_name"] = hostapi["name"] | |
input_devices = [ | |
f"{d['name']} ({d['hostapi_name']})" | |
for d in devices | |
if d["max_input_channels"] > 0 | |
] | |
output_devices = [ | |
f"{d['name']} ({d['hostapi_name']})" | |
for d in devices | |
if d["max_output_channels"] > 0 | |
] | |
input_devices_indices = [ | |
d["index"] if "index" in d else d["name"] | |
for d in devices | |
if d["max_input_channels"] > 0 | |
] | |
output_devices_indices = [ | |
d["index"] if "index" in d else d["name"] | |
for d in devices | |
if d["max_output_channels"] > 0 | |
] | |
return ( | |
input_devices, | |
output_devices, | |
input_devices_indices, | |
output_devices_indices, | |
) | |
def set_devices(self, input_device, output_device): | |
"""设置输出设备""" | |
( | |
input_devices, | |
output_devices, | |
input_device_indices, | |
output_device_indices, | |
) = self.get_devices() | |
sd.default.device[0] = input_device_indices[ | |
input_devices.index(input_device) | |
] | |
sd.default.device[1] = output_device_indices[ | |
output_devices.index(output_device) | |
] | |
print("input device:" + str(sd.default.device[0]) + ":" + str(input_device)) | |
print( | |
"output device:" + str(sd.default.device[1]) + ":" + str(output_device) | |
) | |
gui = GUI() | |