Spaces:
Sleeping
Sleeping
Upload app.py
Browse files- src/app.py +101 -0
src/app.py
ADDED
|
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
| 3 |
+
import nltk
|
| 4 |
+
import math
|
| 5 |
+
import torch
|
| 6 |
+
|
| 7 |
+
model_name = "KateMaiatskaia1836/t5-pretrained_v1"
|
| 8 |
+
max_input_length = 512
|
| 9 |
+
|
| 10 |
+
st.header("Generate candidate titles for articles")
|
| 11 |
+
|
| 12 |
+
st_model_load = st.text('Loading title generator model...')
|
| 13 |
+
|
| 14 |
+
@st.cache_data()
|
| 15 |
+
def load_model():
|
| 16 |
+
print("Loading model...")
|
| 17 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 18 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
| 19 |
+
nltk.download('punkt')
|
| 20 |
+
print("Model loaded!")
|
| 21 |
+
return tokenizer, model
|
| 22 |
+
|
| 23 |
+
tokenizer, model = load_model()
|
| 24 |
+
st.success('Model loaded!')
|
| 25 |
+
st_model_load.text("")
|
| 26 |
+
|
| 27 |
+
with st.sidebar:
|
| 28 |
+
st.header("Model parameters")
|
| 29 |
+
if 'num_titles' not in st.session_state:
|
| 30 |
+
st.session_state.num_titles = 5
|
| 31 |
+
def on_change_num_titles():
|
| 32 |
+
st.session_state.num_titles = num_titles
|
| 33 |
+
num_titles = st.slider("Number of titles to generate", min_value=1, max_value=10, value=1, step=1, on_change=on_change_num_titles)
|
| 34 |
+
if 'temperature' not in st.session_state:
|
| 35 |
+
st.session_state.temperature = 0.7
|
| 36 |
+
def on_change_temperatures():
|
| 37 |
+
st.session_state.temperature = temperature
|
| 38 |
+
temperature = st.slider("Temperature", min_value=0.1, max_value=1.5, value=0.6, step=0.05, on_change=on_change_temperatures)
|
| 39 |
+
st.markdown("_High temperature means that results are more random_")
|
| 40 |
+
|
| 41 |
+
if 'text' not in st.session_state:
|
| 42 |
+
st.session_state.text = ""
|
| 43 |
+
st_text_area = st.text_area('Text to generate the title for', value=st.session_state.text, height=500)
|
| 44 |
+
|
| 45 |
+
def generate_title():
|
| 46 |
+
st.session_state.text = st_text_area
|
| 47 |
+
|
| 48 |
+
# tokenize text
|
| 49 |
+
inputs = ["summarize: " + st_text_area]
|
| 50 |
+
inputs = tokenizer(inputs, return_tensors="pt")
|
| 51 |
+
|
| 52 |
+
# compute span boundaries
|
| 53 |
+
num_tokens = len(inputs["input_ids"][0])
|
| 54 |
+
print(f"Input has {num_tokens} tokens")
|
| 55 |
+
max_input_length = 512
|
| 56 |
+
num_spans = math.ceil(num_tokens / max_input_length)
|
| 57 |
+
print(f"Input has {num_spans} spans")
|
| 58 |
+
overlap = math.ceil((num_spans * max_input_length - num_tokens) / max(num_spans - 1, 1))
|
| 59 |
+
spans_boundaries = []
|
| 60 |
+
start = 0
|
| 61 |
+
for i in range(num_spans):
|
| 62 |
+
spans_boundaries.append([start + max_input_length * i, start + max_input_length * (i + 1)])
|
| 63 |
+
start -= overlap
|
| 64 |
+
print(f"Span boundaries are {spans_boundaries}")
|
| 65 |
+
spans_boundaries_selected = []
|
| 66 |
+
j = 0
|
| 67 |
+
for _ in range(num_titles):
|
| 68 |
+
spans_boundaries_selected.append(spans_boundaries[j])
|
| 69 |
+
j += 1
|
| 70 |
+
if j == len(spans_boundaries):
|
| 71 |
+
j = 0
|
| 72 |
+
print(f"Selected span boundaries are {spans_boundaries_selected}")
|
| 73 |
+
|
| 74 |
+
# transform input with spans
|
| 75 |
+
tensor_ids = [inputs["input_ids"][0][boundary[0]:boundary[1]] for boundary in spans_boundaries_selected]
|
| 76 |
+
tensor_masks = [inputs["attention_mask"][0][boundary[0]:boundary[1]] for boundary in spans_boundaries_selected]
|
| 77 |
+
|
| 78 |
+
inputs = {
|
| 79 |
+
"input_ids": torch.stack(tensor_ids),
|
| 80 |
+
"attention_mask": torch.stack(tensor_masks)
|
| 81 |
+
}
|
| 82 |
+
|
| 83 |
+
# compute predictions
|
| 84 |
+
outputs = model.generate(**inputs, do_sample=True, temperature=temperature)
|
| 85 |
+
decoded_outputs = tokenizer.batch_decode(outputs, skip_special_tokens=True)
|
| 86 |
+
predicted_titles = [nltk.sent_tokenize(decoded_output.strip())[0] for decoded_output in decoded_outputs]
|
| 87 |
+
|
| 88 |
+
st.session_state.titles = predicted_titles
|
| 89 |
+
|
| 90 |
+
# generate title button
|
| 91 |
+
st_generate_button = st.button('Generate title', on_click=generate_title)
|
| 92 |
+
|
| 93 |
+
# title generation labels
|
| 94 |
+
if 'titles' not in st.session_state:
|
| 95 |
+
st.session_state.titles = []
|
| 96 |
+
|
| 97 |
+
if len(st.session_state.titles) > 0:
|
| 98 |
+
with st.container():
|
| 99 |
+
st.subheader("Generated titles")
|
| 100 |
+
for title in st.session_state.titles:
|
| 101 |
+
st.markdown("__" + title + "__")
|