Spaces:
Running
Running
# from huggingface_hub import login | |
# login() | |
import datasets | |
from langchain.docstore.document import Document | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain_community.retrievers import BM25Retriever | |
knowledge_base = datasets.load_dataset("m-ric/huggingface_doc", split="train") | |
knowledge_base = knowledge_base.filter(lambda row: row["source"].startswith("huggingface/transformers")) | |
source_docs = [ | |
Document(page_content=doc["text"], metadata={"source": doc["source"].split("/")[1]}) for doc in knowledge_base | |
] | |
text_splitter = RecursiveCharacterTextSplitter( | |
chunk_size=500, | |
chunk_overlap=50, | |
add_start_index=True, | |
strip_whitespace=True, | |
separators=["\n\n", "\n", ".", " ", ""], | |
) | |
docs_processed = text_splitter.split_documents(source_docs) | |
from smolagents import Tool | |
class RetrieverTool(Tool): | |
name = "retriever" | |
description = "Uses semantic search to retrieve the parts of transformers documentation that could be most relevant to answer your query." | |
inputs = { | |
"query": { | |
"type": "string", | |
"description": "The query to perform. This should be semantically close to your target documents. Use the affirmative form rather than a question.", | |
} | |
} | |
output_type = "string" | |
def __init__(self, docs, **kwargs): | |
super().__init__(**kwargs) | |
self.retriever = BM25Retriever.from_documents(docs, k=10) | |
def forward(self, query: str) -> str: | |
assert isinstance(query, str), "Your search query must be a string" | |
docs = self.retriever.invoke( | |
query, | |
) | |
return "\nRetrieved documents:\n" + "".join( | |
[f"\n\n===== Document {str(i)} =====\n" + doc.page_content for i, doc in enumerate(docs)] | |
) | |
from smolagents import CodeAgent, HfApiModel | |
retriever_tool = RetrieverTool(docs_processed) | |
agent = CodeAgent( | |
tools=[retriever_tool], | |
model=HfApiModel("meta-llama/Llama-3.3-70B-Instruct"), | |
max_steps=4, | |
verbosity_level=2, | |
) | |
agent_output = agent.run("For a transformers model training, which is slower, the forward or the backward pass?") | |
print("Final output:") | |
print(agent_output) | |