Spaces:
Running
Running
<!--Copyright 2024 The HuggingFace Team. All rights reserved. | |
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with | |
the License. You may obtain a copy of the License at | |
http://www.apache.org/licenses/LICENSE-2.0 | |
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on | |
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the | |
specific language governing permissions and limitations under the License. | |
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be | |
rendered properly in your Markdown viewer. | |
--> | |
# 模型 | |
<Tip warning={true}> | |
Smolagents 是一个实验性 API,其可能会随时发生更改。由于 API 或底层模型可能会变化,智能体返回的结果可能会有所不同。 | |
</Tip> | |
要了解有关智能体和工具的更多信息,请务必阅读[入门指南](../index)。此页面包含底层类的 API 文档。 | |
## 模型 | |
您可以自由创建和使用自己的模型为智能体提供支持。 | |
您可以使用任何 `model` 可调用对象作为智能体的模型,只要满足以下条件: | |
1. 它遵循[消息格式](./chat_templating)(`List[Dict[str, str]]`),将其作为输入 `messages`,并返回一个 `str`。 | |
2. 它在生成的序列到达 `stop_sequences` 参数中指定的内容之前停止生成输出。 | |
要定义您的 LLM,可以创建一个 `custom_model` 方法,该方法接受一个 [messages](./chat_templating) 列表,并返回一个包含 `.content` 属性的对象,其中包含生成的文本。此可调用对象还需要接受一个 `stop_sequences` 参数,用于指示何时停止生成。 | |
```python | |
from huggingface_hub import login, InferenceClient | |
login("<YOUR_HUGGINGFACEHUB_API_TOKEN>") | |
model_id = "meta-llama/Llama-3.3-70B-Instruct" | |
client = InferenceClient(model=model_id) | |
def custom_model(messages, stop_sequences=["Task"]): | |
response = client.chat_completion(messages, stop=stop_sequences, max_tokens=1000) | |
answer = response.choices[0].message | |
return answer | |
``` | |
此外,`custom_model` 还可以接受一个 `grammar` 参数。如果在智能体初始化时指定了 `grammar`,则此参数将在调用模型时传递,以便进行[约束生成](https://huggingface.co/docs/text-generation-inference/conceptual/guidance),从而强制生成格式正确的智能体输出。 | |
### TransformersModel | |
为了方便起见,我们添加了一个 `TransformersModel`,该模型通过为初始化时指定的 `model_id` 构建一个本地 `transformers` pipeline 来实现上述功能。 | |
```python | |
from smolagents import TransformersModel | |
model = TransformersModel(model_id="HuggingFaceTB/SmolLM-135M-Instruct") | |
print(model([{"role": "user", "content": [{"type": "text", "text": "Ok!"}]}], stop_sequences=["great"])) | |
``` | |
```text | |
>>> What a | |
``` | |
> [!TIP] | |
> 您必须在机器上安装 `transformers` 和 `torch`。如果尚未安装,请运行 `pip install smolagents[transformers]`。 | |
[[autodoc]] TransformersModel | |
### HfApiModel | |
`HfApiModel` 封装了 huggingface_hub 的 [InferenceClient](https://huggingface.co/docs/huggingface_hub/main/en/guides/inference),用于执行 LLM。它支持 HF 的 [Inference API](https://huggingface.co/docs/api-inference/index) 以及 Hub 上所有可用的[Inference Providers](https://huggingface.co/blog/inference-providers)。 | |
```python | |
from smolagents import HfApiModel | |
messages = [ | |
{"role": "user", "content": [{"type": "text", "text": "Hello, how are you?"}]} | |
] | |
model = HfApiModel() | |
print(model(messages)) | |
``` | |
```text | |
>>> Of course! If you change your mind, feel free to reach out. Take care! | |
``` | |
[[autodoc]] HfApiModel | |
### LiteLLMModel | |
`LiteLLMModel` 利用 [LiteLLM](https://www.litellm.ai/) 支持来自不同提供商的 100+ 个 LLM。您可以在模型初始化时传递 `kwargs`,这些参数将在每次使用模型时被使用,例如下面的示例中传递了 `temperature`。 | |
```python | |
from smolagents import LiteLLMModel | |
messages = [ | |
{"role": "user", "content": [{"type": "text", "text": "Hello, how are you?"}]} | |
] | |
model = LiteLLMModel("anthropic/claude-3-5-sonnet-latest", temperature=0.2, max_tokens=10) | |
print(model(messages)) | |
``` | |
[[autodoc]] LiteLLMModel | |
### OpenAIServerModel | |
此类允许您调用任何 OpenAIServer 兼容模型。 | |
以下是设置方法(您可以自定义 `api_base` URL 指向其他服务器): | |
```py | |
import os | |
from smolagents import OpenAIServerModel | |
model = OpenAIServerModel( | |
model_id="gpt-4o", | |
api_base="https://api.openai.com/v1", | |
api_key=os.environ["OPENAI_API_KEY"], | |
) | |
``` | |
[[autodoc]] OpenAIServerModel | |
### AzureOpenAIServerModel | |
`AzureOpenAIServerModel` 允许您连接到任何 Azure OpenAI 部署。 | |
下面是设置示例,请注意,如果已经设置了相应的环境变量,您可以省略 `azure_endpoint`、`api_key` 和 `api_version` 参数——环境变量包括 `AZURE_OPENAI_ENDPOINT`、`AZURE_OPENAI_API_KEY` 和 `OPENAI_API_VERSION`。 | |
请注意,`OPENAI_API_VERSION` 没有 `AZURE_` 前缀,这是由于底层 [openai](https://github.com/openai/openai-python) 包的设计所致。 | |
```py | |
import os | |
from smolagents import AzureOpenAIServerModel | |
model = AzureOpenAIServerModel( | |
model_id = os.environ.get("AZURE_OPENAI_MODEL"), | |
azure_endpoint=os.environ.get("AZURE_OPENAI_ENDPOINT"), | |
api_key=os.environ.get("AZURE_OPENAI_API_KEY"), | |
api_version=os.environ.get("OPENAI_API_VERSION") | |
) | |
``` | |
[[autodoc]] AzureOpenAIServerModel | |
### MLXModel | |
```python | |
from smolagents import MLXModel | |
model = MLXModel(model_id="HuggingFaceTB/SmolLM-135M-Instruct") | |
print(model([{"role": "user", "content": "Ok!"}], stop_sequences=["great"])) | |
``` | |
```text | |
>>> What a | |
``` | |
> [!TIP] | |
> 您必须在机器上安装 `mlx-lm`。如果尚未安装,请运行 `pip install smolagents[mlx-lm]`。 | |
[[autodoc]] MLXModel | |