Spaces:
Sleeping
Sleeping
import streamlit as st | |
import json | |
from typing import Dict, List, Any | |
import re | |
def format_project_response(project: dict, indent_level: int = 0) -> str: | |
"""Format project details with proper indentation and spacing""" | |
indent = " " * indent_level | |
response = [f"{indent}• {project['name']}"] | |
response.append(f"{indent} {project['description']}") | |
if 'skills_used' in project: | |
response.append(f"{indent} Technologies: {', '.join(project['skills_used'])}") | |
if 'status' in project: | |
status = project['status'] | |
if 'development' in status.lower() or 'progress' in status.lower(): | |
response.append(f"{indent} Status: {status}") | |
if 'confidentiality_note' in project: | |
response.append(f"{indent} Note: {project['confidentiality_note']}") | |
return '\n'.join(response) + '\n' | |
def format_skills_response(skills: dict) -> str: | |
"""Format skills with proper hierarchy and spacing""" | |
response = ["My Technical Expertise:\n"] | |
categories = { | |
'Machine Learning & AI': ['core', 'frameworks', 'focus_areas'], | |
'Programming': ['primary', 'libraries', 'tools'], | |
'Data & Analytics': ['databases', 'visualization', 'processing'] | |
} | |
for category, subcategories in categories.items(): | |
response.append(f"• {category}") | |
for subcat in subcategories: | |
if subcat in skills['machine_learning']: | |
items = skills['machine_learning'][subcat] | |
response.append(f" - {subcat.title()}: {', '.join(items)}") | |
response.append("") # Add spacing between categories | |
return '\n'.join(response) | |
def analyze_job_description(text: str, knowledge_base: dict) -> str: | |
"""Analyze job description and provide detailed alignment""" | |
# Extract key requirements | |
requirements = { | |
'technical_tools': set(), | |
'soft_skills': set(), | |
'responsibilities': set() | |
} | |
# Common technical tools and skills | |
tech_keywords = { | |
'data science', 'analytics', 'visualization', 'tableau', 'python', | |
'machine learning', 'modeling', 'automation', 'sql', 'data analysis' | |
} | |
# Common soft skills | |
soft_keywords = { | |
'collaborate', 'communicate', 'analyze', 'design', 'implement', | |
'produce insights', 'improve', 'support' | |
} | |
text_lower = text.lower() | |
# Extract company name if present | |
companies = ['rbc', 'shopify', 'google', 'microsoft', 'amazon'] | |
company_name = next((company.upper() for company in companies if company in text_lower), None) | |
# Extract requirements | |
for word in tech_keywords: | |
if word in text_lower: | |
requirements['technical_tools'].add(word) | |
for word in soft_keywords: | |
if word in text_lower: | |
requirements['soft_skills'].add(word) | |
# Build response | |
response_parts = [] | |
# Company-specific introduction if applicable | |
if company_name: | |
response_parts.append(f"Here's how I align with {company_name}'s requirements:\n") | |
else: | |
response_parts.append("Based on the job requirements, here's how I align:\n") | |
# Technical Skills Alignment | |
response_parts.append("• Technical Skills Match:") | |
my_relevant_skills = [] | |
if 'visualization' in requirements['technical_tools'] or 'tableau' in requirements['technical_tools']: | |
my_relevant_skills.append(" - Proficient in Tableau and data visualization (used in multiple projects)") | |
if 'data analysis' in requirements['technical_tools']: | |
my_relevant_skills.append(" - Strong data analysis skills demonstrated in projects like LoanTap Credit Assessment") | |
if 'machine learning' in requirements['technical_tools'] or 'modeling' in requirements['technical_tools']: | |
my_relevant_skills.append(" - Experienced in building ML models from scratch (demonstrated in algorithm practice projects)") | |
response_parts.extend(my_relevant_skills) | |
response_parts.append("") | |
# Business Understanding | |
response_parts.append("• Business Acumen:") | |
response_parts.append(" - Commerce background provides strong understanding of business requirements") | |
response_parts.append(" - Experience in translating business needs into technical solutions") | |
response_parts.append(" - Proven ability to communicate technical findings to business stakeholders") | |
response_parts.append("") | |
# Project Experience | |
response_parts.append("• Relevant Project Experience:") | |
relevant_projects = [] | |
if 'automation' in requirements['technical_tools']: | |
relevant_projects.append(" - Developed AI-powered POS system with automated operations") | |
if 'data analysis' in requirements['technical_tools']: | |
relevant_projects.append(" - Built credit assessment model for LoanTap using comprehensive data analysis") | |
if 'machine learning' in requirements['technical_tools']: | |
relevant_projects.append(" - Created multiple ML models from scratch, including predictive analytics for Ola") | |
response_parts.extend(relevant_projects) | |
response_parts.append("") | |
# Education and Additional Qualifications | |
response_parts.append("• Additional Strengths:") | |
response_parts.append(" - Currently pursuing advanced AI/ML education in Canada") | |
response_parts.append(" - Strong foundation in both technical implementation and business analysis") | |
response_parts.append(" - Experience in end-to-end project delivery and deployment") | |
return '\n'.join(response_parts) | |
def format_story_response(knowledge_base: dict) -> str: | |
"""Format background story with proper structure""" | |
response_parts = ["My Journey from Commerce to ML/AI:\n"] | |
# Education Background | |
response_parts.append("• Education Background:") | |
response_parts.append(f" - Commerce degree from {knowledge_base['education']['undergraduate']['institution']}") | |
response_parts.append(f" - Currently at {knowledge_base['education']['postgraduate'][0]['institution']}") | |
response_parts.append(f" - Also enrolled at {knowledge_base['education']['postgraduate'][1]['institution']}") | |
response_parts.append("") | |
# Career Transition | |
response_parts.append("• Career Transition:") | |
transition = next((qa['answer'] for qa in knowledge_base['frequently_asked_questions'] | |
if 'transition' in qa['question'].lower()), '') | |
response_parts.append(f" - {transition[:200]}...") | |
response_parts.append("") | |
# Current Focus | |
response_parts.append("• Current Focus:") | |
response_parts.append(" - Building practical ML projects") | |
response_parts.append(" - Advancing AI/ML education in Canada") | |
response_parts.append("") | |
# Goals | |
response_parts.append("• Future Goals:") | |
response_parts.append(" - Secure ML Engineering role in Canada") | |
response_parts.append(" - Develop innovative AI solutions") | |
response_parts.append(" - Contribute to cutting-edge ML projects") | |
return '\n'.join(response_parts) | |
def format_standout_response() -> str: | |
"""Format response about standout qualities""" | |
response_parts = ["What Makes Me Stand Out:\n"] | |
response_parts.append("• Unique Background:") | |
response_parts.append(" - Successfully transitioned from commerce to tech") | |
response_parts.append(" - Blend of business acumen and technical expertise") | |
response_parts.append("") | |
response_parts.append("• Practical Experience:") | |
response_parts.append(" - Built multiple ML projects from scratch") | |
response_parts.append(" - Focus on real-world applications") | |
response_parts.append("") | |
response_parts.append("• Technical Depth:") | |
response_parts.append(" - Strong foundation in ML/AI principles") | |
response_parts.append(" - Experience with end-to-end project implementation") | |
response_parts.append("") | |
response_parts.append("• Innovation Focus:") | |
response_parts.append(" - Developing novel solutions in ML/AI") | |
response_parts.append(" - Emphasis on practical impact") | |
return '\n'.join(response_parts) | |
def add_relevant_links(response: str, query: str, knowledge_base: dict) -> str: | |
"""Add relevant links based on query context""" | |
query_lower = query.lower() | |
links = [] | |
if any(word in query_lower for word in ['project', 'portfolio', 'work']): | |
links.append(f"\nView my complete portfolio: {knowledge_base['personal_details']['online_presence']['portfolio']}") | |
if any(word in query_lower for word in ['background', 'experience', 'work']): | |
links.append(f"\nConnect with me: {knowledge_base['personal_details']['online_presence']['linkedin']}") | |
for post in knowledge_base['personal_details']['online_presence']['blog_posts']: | |
if 'link' in post and any(word in query_lower for word in post['title'].lower().split()): | |
links.append(f"\nRelated blog post: {post['link']}") | |
break | |
if links: | |
response += '\n' + '\n'.join(links) | |
return response | |
import streamlit as st | |
import json | |
from typing import Dict, List, Any | |
import re | |
def handle_market_conditions(knowledge_base: dict) -> str: | |
"""Handle market condition related queries with perspective""" | |
market_outlook = knowledge_base['personal_details']['perspectives']['market_outlook'] | |
# Enhanced formatting for better readability | |
response_parts = [ | |
"Here's my perspective on the current market situation:\n", | |
f"• {market_outlook['job_market']}", | |
f"\n• {market_outlook['value_proposition']}", | |
f"\n• {market_outlook['strategy']}" | |
] | |
return '\n'.join(response_parts) | |
def handle_general_query(query: str, knowledge_base: dict) -> str: | |
"""Enhanced handling of general queries""" | |
query_lower = query.lower() | |
# Improved weather-related query detection | |
if any(word in query_lower for word in ['weather', 'temperature', 'climate', 'cold', 'hot', 'warm']): | |
return knowledge_base['personal_details']['common_queries']['weather'] | |
# Enhanced market-related query detection | |
if any(phrase in query_lower for phrase in ['market', 'job market', 'jobs', 'opportunities', 'hiring']): | |
return handle_market_conditions(knowledge_base) | |
# More specific job fit query detection | |
if any(phrase in query_lower for phrase in ['job description', 'job posting', 'job requirement', 'good fit']): | |
return ("Please paste the job description you'd like me to analyze. I'll evaluate how my skills and experience align with the requirements.") | |
# Default to personal summary | |
return knowledge_base['personal_details']['professional_summary'] | |
def generate_response(query: str, knowledge_base: dict) -> str: | |
"""Enhanced response generation with improved pattern matching""" | |
query_lower = query.lower() | |
# Enhanced market conditions detection | |
if any(word in query_lower for word in ['market', 'job market', 'hiring']) or \ | |
any(phrase in query_lower for phrase in ['market down', 'market conditions', 'current situation']): | |
return handle_market_conditions(knowledge_base) | |
# Enhanced job description analysis detection | |
if ('job description' in query_lower or 'job posting' in query_lower) or \ | |
(len(query.split()) > 20 and any(word in query_lower for word in | |
['requirements', 'qualifications', 'looking for', 'responsibilities', 'skills needed'])): | |
if len(query.split()) < 20: | |
return "Please paste the complete job description, and I'll analyze how well I match the requirements." | |
return analyze_job_description(query, knowledge_base) | |
# Enhanced weather query detection | |
if any(word in query_lower for word in ['weather', 'temperature', 'climate', 'cold', 'hot', 'warm']): | |
return handle_general_query(query, knowledge_base) | |
# Existing handlers remain unchanged | |
if any(word in query_lower for word in ['list', 'project', 'portfolio', 'built', 'created', 'developed']): | |
response_parts = ["Here are my key projects:\n"] | |
response_parts.append("Major Projects (In Development):") | |
for project in knowledge_base['projects']['major_projects']: | |
response_parts.append(format_project_response(project, indent_level=1)) | |
response_parts.append("Completed Algorithm Implementation Projects:") | |
for project in knowledge_base['projects']['algorithm_practice_projects']: | |
response_parts.append(format_project_response(project, indent_level=1)) | |
response = '\n'.join(response_parts) | |
return add_relevant_links(response, query, knowledge_base) | |
elif any(word in query_lower for word in ['background', 'journey', 'story', 'transition']): | |
return format_story_response(knowledge_base) | |
elif any(word in query_lower for word in ['skill', 'know', 'technology', 'stack']): | |
return format_skills_response(knowledge_base['skills']['technical_skills']) | |
elif any(word in query_lower for word in ['stand out', 'unique', 'different', 'special']): | |
return format_standout_response() | |
# General query handler for shorter queries | |
elif len(query.split()) < 5: | |
return handle_general_query(query, knowledge_base) | |
# Default response | |
return (f"I'm {knowledge_base['personal_details']['professional_summary']}\n\n" | |
"You can ask me about:\n" | |
"• My projects and portfolio\n" | |
"• My journey from commerce to ML/AI\n" | |
"• My technical skills and experience\n" | |
"• My fit for ML/AI roles\n" | |
"Or paste a job description to see how my profile matches!") | |
def main(): | |
st.title("💬 Chat with Manyue's Portfolio") | |
# Initialize session state | |
if "messages" not in st.session_state: | |
st.session_state.messages = [] | |
if "knowledge_base" not in st.session_state: | |
try: | |
with open('knowledge_base.json', 'r', encoding='utf-8') as f: | |
st.session_state.knowledge_base = json.load(f) | |
except FileNotFoundError: | |
st.error("Knowledge base file not found.") | |
return | |
# Display welcome message | |
if "displayed_welcome" not in st.session_state: | |
st.write(""" | |
Hi! I'm Manyue's AI assistant. I can tell you about: | |
- My journey from commerce to ML/AI | |
- My technical skills and projects | |
- My fit for ML/AI roles | |
- You can also paste job descriptions to see how my profile matches! | |
""") | |
st.session_state.displayed_welcome = True | |
# Create two columns with adjusted ratios | |
col1, col2 = st.columns([4, 1]) | |
with col1: | |
# Display chat messages | |
for message in st.session_state.messages: | |
with st.chat_message(message["role"]): | |
st.markdown(message["content"]) | |
# Chat input | |
if prompt := st.chat_input("Ask me anything or paste a job description..."): | |
# Add user message | |
st.session_state.messages.append({"role": "user", "content": prompt}) | |
try: | |
# Generate and display response | |
with st.chat_message("assistant"): | |
response = generate_response(prompt, st.session_state.knowledge_base) | |
st.markdown(response) | |
st.session_state.messages.append({"role": "assistant", "content": response}) | |
except Exception as e: | |
st.error(f"An error occurred: {str(e)}") | |
st.rerun() | |
with col2: | |
st.markdown("### Quick Questions") | |
example_questions = [ | |
"Tell me about your ML projects", | |
"What are your technical skills?", | |
"What makes you stand out?", | |
"What's your journey into ML?", | |
"Paste a job description to see how I match!" | |
] | |
for question in example_questions: | |
if st.button(question, key=f"btn_{question}", use_container_width=True): | |
st.session_state.messages.append({"role": "user", "content": question}) | |
try: | |
response = generate_response(question, st.session_state.knowledge_base) | |
st.session_state.messages.append({"role": "assistant", "content": response}) | |
except Exception as e: | |
st.error(f"An error occurred: {str(e)}") | |
st.rerun() | |
st.markdown("---") | |
if st.button("Clear Chat", use_container_width=True): | |
st.session_state.messages = [] | |
st.rerun() | |
if __name__ == "__main__": | |
main() | |