Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,22 +1,28 @@
|
|
1 |
import streamlit as st
|
2 |
import torch
|
3 |
-
from diffusers import
|
4 |
-
|
5 |
|
6 |
-
# Load the video
|
7 |
st.write("Loading model... (first run may take a few minutes)")
|
8 |
|
9 |
-
model_id = "
|
10 |
-
pipe =
|
|
|
11 |
|
12 |
st.title("Text-to-Video Generator")
|
13 |
prompt = st.text_input("Enter a text prompt for the video:")
|
14 |
-
|
|
|
15 |
|
16 |
if st.button("Generate Video") and prompt:
|
17 |
with st.spinner("Generating video... this may take a while on CPU"):
|
18 |
result = pipe(prompt=prompt, num_frames=frames, num_inference_steps=20)
|
19 |
video_frames = result.frames # List of PIL images
|
20 |
-
export_to_video(video_frames, "output.mp4", fps=8)
|
21 |
|
22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
import torch
|
3 |
+
from diffusers import DiffusionPipeline
|
4 |
+
import tempfile
|
5 |
|
6 |
+
# Load the text-to-video model
|
7 |
st.write("Loading model... (first run may take a few minutes)")
|
8 |
|
9 |
+
model_id = "damo-vilab/text-to-video-ms-1.7b"
|
10 |
+
pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
|
11 |
+
pipe.to("cpu") # Stay on CPU since we don’t have a GPU
|
12 |
|
13 |
st.title("Text-to-Video Generator")
|
14 |
prompt = st.text_input("Enter a text prompt for the video:")
|
15 |
+
|
16 |
+
frames = st.slider("Number of frames (video length)", min_value=8, max_value=24, value=16)
|
17 |
|
18 |
if st.button("Generate Video") and prompt:
|
19 |
with st.spinner("Generating video... this may take a while on CPU"):
|
20 |
result = pipe(prompt=prompt, num_frames=frames, num_inference_steps=20)
|
21 |
video_frames = result.frames # List of PIL images
|
|
|
22 |
|
23 |
+
# Save frames as video file
|
24 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp4") as temp_file:
|
25 |
+
video_path = temp_file.name
|
26 |
+
result.export_to_video(video_path, fps=8)
|
27 |
+
|
28 |
+
st.video(video_path)
|