Spaces:
Sleeping
Sleeping
from PIL import Image | |
from torchvision import transforms | |
from transformers import AutoModelForImageClassification | |
import gradio as gr | |
import torch | |
num_classes = 2 | |
def predict(inp): | |
inputs = data_transforms(inp)[None] | |
model.eval() | |
with torch.no_grad(): | |
logits = model(inputs)['logits'] | |
probs = torch.softmax(logits,dim=1) | |
confidences = {labels[i]: probs[0][i] for i in range(num_classes)} | |
return confidences | |
data_transforms = transforms.Compose([ | |
transforms.Resize((224,224)), # Resize the images to a specific size | |
transforms.ToTensor(), # Convert images to tensors | |
#transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) # Normalize the image data | |
]) | |
# Load model directly | |
model = AutoModelForImageClassification.from_pretrained("Manu8/vit_cats-vs-dogs", trust_remote_code=True) | |
labels = [ | |
'cat','dog' | |
] | |
gr.Interface(fn=predict, | |
inputs=gr.Image(type="pil"), | |
outputs=gr.Label(num_top_classes=3)).launch() |