Update app.py
Browse files
app.py
CHANGED
@@ -4,6 +4,7 @@ import numpy as np
|
|
4 |
from PIL import Image
|
5 |
from datasets import load_dataset
|
6 |
from diffusers import StableDiffusionImg2ImgPipeline
|
|
|
7 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
8 |
pipe = StableDiffusionImg2ImgPipeline.from_pretrained("stabilityai/stable-diffusion-2", torch_dtype=torch.float16, revision="fp16") if torch.cuda.is_available() else StableDiffusionImg2ImgPipeline.from_pretrained("stabilityai/stable-diffusion-2")
|
9 |
pipe = pipe.to(device)
|
@@ -20,13 +21,9 @@ def infer(source_img, prompt, guide, steps, seed, Strength):
|
|
20 |
image = pipe([prompt], init_image=source_image, strength=Strength, guidance_scale=guide, num_inference_steps=steps).images[0]
|
21 |
return image
|
22 |
|
23 |
-
gr.Interface(fn=infer, inputs=[gr.Image(source="upload", type="filepath", label="Raw Image"), gr.Textbox(label = 'Prompt Input Text'),
|
24 |
-
gr.Slider(2, 15, value = 7, label = '
|
25 |
-
gr.Slider(
|
26 |
-
gr.Slider(
|
27 |
-
|
28 |
-
|
29 |
-
maximum = 2147483647,
|
30 |
-
step = 1,
|
31 |
-
randomize = True), gr.Slider(label='Strength', minimum = 0, maximum = 1, step = .05, value = .5)
|
32 |
-
], outputs='image', title = "Stable Diffusion 2.0 Image to Image Pipeline CPU", description = "For more information on Stable Diffusion 2.0 see https://github.com/Stability-AI/stablediffusion <br><br>Upload an Image (must be .PNG and 512x512-2048x2048) enter a Prompt, or let it just do its Thing, then click submit. 10 Iterations takes about ~900-1200 seconds currently. For more informationon about Stable Diffusion or Suggestions for prompts, keywords, artists or styles see https://github.com/Maks-s/sd-akashic", article = "Code Monkey: <a href=\"https://huggingface.co/Manjushri\">Manjushri</a>").queue(max_size=5).launch()
|
|
|
4 |
from PIL import Image
|
5 |
from datasets import load_dataset
|
6 |
from diffusers import StableDiffusionImg2ImgPipeline
|
7 |
+
|
8 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
9 |
pipe = StableDiffusionImg2ImgPipeline.from_pretrained("stabilityai/stable-diffusion-2", torch_dtype=torch.float16, revision="fp16") if torch.cuda.is_available() else StableDiffusionImg2ImgPipeline.from_pretrained("stabilityai/stable-diffusion-2")
|
10 |
pipe = pipe.to(device)
|
|
|
21 |
image = pipe([prompt], init_image=source_image, strength=Strength, guidance_scale=guide, num_inference_steps=steps).images[0]
|
22 |
return image
|
23 |
|
24 |
+
gr.Interface(fn=infer, inputs=[gr.Image(source="upload", type="filepath", label="Raw Image. <b>Must Be .png"), gr.Textbox(label = 'Prompt Input Text. <b>77 Token (Keyword or Symbol) Maximum'),
|
25 |
+
gr.Slider(2, 15, value = 7, label = 'Guidance Scale'),
|
26 |
+
gr.Slider(1, 25, value = 10, step = 1, label = 'Number of Iterations'),
|
27 |
+
gr.Slider(label = "Seed", minimum = 0, maximum = 987654321987654321, step = 1, randomize = True),
|
28 |
+
gr.Slider(label='Strength', minimum = 0, maximum = 1, step = .05, value = .5)],
|
29 |
+
outputs='image', title = "Stable Diffusion 2.0 Image to Image Pipeline CPU", description = "For more information on Stable Diffusion 2.0 see https://github.com/Stability-AI/stablediffusion <br><br>Upload an Image (<b>MUST Be .PNG and 512x512 or 768x768) enter a Prompt, or let it just do its Thing, then click submit. 10 Iterations takes about ~900-1200 seconds currently. For more informationon about Stable Diffusion or Suggestions for prompts, keywords, artists or styles see https://github.com/Maks-s/sd-akashic", article = "Code Monkey: <a href=\"https://huggingface.co/Manjushri\">Manjushri</a>").queue(max_size=5).launch()
|
|
|
|
|
|
|
|