Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import modin.pandas as pd
|
3 |
+
import torch
|
4 |
+
|
5 |
+
from diffusers import DiffusionPipeline
|
6 |
+
from huggingface_hub import login
|
7 |
+
|
8 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
9 |
+
pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", torch_dtype=torch.float16) if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0")
|
10 |
+
pipe = pipe.to(device)
|
11 |
+
|
12 |
+
def infer(source_img, prompt, negative_prompt, guide, steps, seed, Strength):
|
13 |
+
generator = torch.Generator(device).manual_seed(seed)
|
14 |
+
source_image = gradio.Paint()
|
15 |
+
image = pipe(prompt, negative_prompt=negative_prompt, image=source_image, strength=Strength, guidance_scale=guide, num_inference_steps=steps).images[0]
|
16 |
+
return image
|
17 |
+
|
18 |
+
gr.Interface(fn=infer, inputs=[gr.Image(source="upload", type="filepath", label="Raw Image. Must Be .png"), gr.Textbox(label = 'Prompt Input Text. 77 Token (Keyword or Symbol) Maximum'), gr.Textbox(label='What you Do Not want the AI to generate.'),
|
19 |
+
gr.Slider(2, 15, value = 7, label = 'Guidance Scale'),
|
20 |
+
gr.Slider(1, 25, value = 10, step = 1, label = 'Number of Iterations'),
|
21 |
+
gr.Slider(label = "Seed", minimum = 0, maximum = 987654321987654321, step = 1, randomize = True),
|
22 |
+
gr.Slider(label='Strength', minimum = 0, maximum = 1, step = .05, value = .5)],
|
23 |
+
outputs='image',
|
24 |
+
title = "Stable Diffusion XL 1.0 Doodle to Image CPU",
|
25 |
+
description = "For more information on Stable Diffusion XL 1.0 see https://huggingface.co/stabilityai/stable-diffusion-xl-refiner-1.0 <br><br>Upload an Image (<b>MUST Be .PNG and 512x512 or 768x768</b>) enter a Prompt, or let it just do its Thing, then click submit. 10 Iterations takes about ~900-1200 seconds currently. For more informationon about Stable Diffusion or Suggestions for prompts, keywords, artists or styles see https://github.com/Maks-s/sd-akashic",
|
26 |
+
article = "Code Monkey: <a href=\"https://huggingface.co/Manjushri\">Manjushri</a>").queue(max_size=5).launch()
|