Manjushri's picture
Update app.py
714ca17
raw
history blame
2.14 kB
import gradio as gr
import modin.pandas as pd
import torch
from PIL import Image
#import imageio
from diffusers import DiffusionPipeline
from huggingface_hub import login
device = "cuda" if torch.cuda.is_available() else "cpu"
pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", torch_dtype=torch.float16) if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0")
pipe = pipe.to(device)
def resize(value,img):
img = Image.open(img)
img = img.resize((value,value))
return img
def infer(source_img, prompt, negative_prompt, guide, steps, seed, Strength):
generator = torch.Generator(device).manual_seed(seed)
src = resize(768, source_img)
image = pipe(prompt, negative_prompt=negative_prompt, image=src, strength=Strength, guidance_scale=guide, num_inference_steps=steps).images[0]
return image
gr.Interface(fn=infer, inputs=[gr.Image(source='canvas'), gr.Textbox(label = 'Prompt Input Text. 77 Token (Keyword or Symbol) Maximum'), gr.Textbox(label='What you Do Not want the AI to generate.'),
gr.Slider(2, 15, value = 7, label = 'Guidance Scale'),
gr.Slider(1, 25, value = 10, step = 1, label = 'Number of Iterations'),
gr.Slider(label = "Seed", minimum = 0, maximum = 987654321987654321, step = 1, randomize = True),
gr.Slider(label='Strength', minimum = 0, maximum = 1, step = .05, value = .5)],
outputs='image',
title = "Stable Diffusion XL 1.0 Doodle to Image CPU",
description = "For more information on Stable Diffusion XL 1.0 see https://huggingface.co/stabilityai/stable-diffusion-xl-refiner-1.0 <br><br>Upload an Image (<b>MUST Be .PNG and 512x512 or 768x768</b>) enter a Prompt, or let it just do its Thing, then click submit. 10 Iterations takes about ~900-1200 seconds currently. For more informationon about Stable Diffusion or Suggestions for prompts, keywords, artists or styles see https://github.com/Maks-s/sd-akashic",
article = "Code Monkey: <a href=\"https://huggingface.co/Manjushri\">Manjushri</a>").queue(max_size=5).launch()