Spaces:
Running
on
T4
Running
on
T4
Update app.py
Browse files
app.py
CHANGED
@@ -51,165 +51,6 @@ def genie (Model, Prompt, negative_prompt, height, width, scale, steps, seed, re
|
|
51 |
torch.cuda.empty_cache()
|
52 |
return image
|
53 |
|
54 |
-
if Model == "Anime":
|
55 |
-
anime = DiffusionPipeline.from_pretrained("circulus/canvers-anime-v3.9.1", torch_dtype=torch.float16, safety_checker=None) if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("circulus/canvers-anime-v3.8.1")
|
56 |
-
anime.enable_xformers_memory_efficient_attention()
|
57 |
-
anime = anime.to(device)
|
58 |
-
torch.cuda.empty_cache()
|
59 |
-
if refine == "Yes":
|
60 |
-
refiner = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", use_safetensors=True, torch_dtype=torch.float16, variant="fp16") if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0")
|
61 |
-
refiner.enable_xformers_memory_efficient_attention()
|
62 |
-
refiner = refiner.to(device)
|
63 |
-
torch.cuda.empty_cache()
|
64 |
-
int_image = anime(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images
|
65 |
-
image = refiner(Prompt, negative_prompt=negative_prompt, image=int_image, denoising_start=high_noise_frac).images[0]
|
66 |
-
torch.cuda.empty_cache()
|
67 |
-
if upscale == "Yes":
|
68 |
-
refiner = DiffusionPipeline.from_pretrained("stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16, use_safetensors=True)
|
69 |
-
refiner.enable_xformers_memory_efficient_attention()
|
70 |
-
refiner = refiner.to(device)
|
71 |
-
torch.cuda.empty_cache()
|
72 |
-
upscaled = refiner(prompt=Prompt, negative_prompt=negative_prompt, image=image, num_inference_steps=15, guidance_scale=0).images[0]
|
73 |
-
torch.cuda.empty_cache()
|
74 |
-
return upscaled
|
75 |
-
else:
|
76 |
-
return image
|
77 |
-
else:
|
78 |
-
if upscale == "Yes":
|
79 |
-
image = anime(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
|
80 |
-
upscaler = DiffusionPipeline.from_pretrained("stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16, use_safetensors=True)
|
81 |
-
upscaler.enable_xformers_memory_efficient_attention()
|
82 |
-
upscaler = upscaler.to(device)
|
83 |
-
torch.cuda.empty_cache()
|
84 |
-
upscaled = upscaler(prompt=Prompt, negative_prompt=negative_prompt, image=image, num_inference_steps=15, guidance_scale=0).images[0]
|
85 |
-
torch.cuda.empty_cache()
|
86 |
-
return upscaled
|
87 |
-
else:
|
88 |
-
image = anime(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
|
89 |
-
torch.cuda.empty_cache()
|
90 |
-
return image
|
91 |
-
|
92 |
-
if Model == "Disney":
|
93 |
-
disney = DiffusionPipeline.from_pretrained("circulus/canvers-disney-v3.9.1", torch_dtype=torch.float16, safety_checker=None) if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("circulus/canvers-disney-v3.8.1")
|
94 |
-
disney.enable_xformers_memory_efficient_attention()
|
95 |
-
disney = disney.to(device)
|
96 |
-
torch.cuda.empty_cache()
|
97 |
-
if refine == "Yes":
|
98 |
-
refiner = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", use_safetensors=True, torch_dtype=torch.float16, variant="fp16") if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0")
|
99 |
-
refiner.enable_xformers_memory_efficient_attention()
|
100 |
-
refiner = refiner.to(device)
|
101 |
-
torch.cuda.empty_cache()
|
102 |
-
int_image = disney(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images
|
103 |
-
image = refiner(Prompt, negative_prompt=negative_prompt, image=int_image, denoising_start=high_noise_frac).images[0]
|
104 |
-
torch.cuda.empty_cache()
|
105 |
-
|
106 |
-
if upscale == "Yes":
|
107 |
-
refiner = DiffusionPipeline.from_pretrained("stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16, use_safetensors=True)
|
108 |
-
refiner.enable_xformers_memory_efficient_attention()
|
109 |
-
refiner = refiner.to(device)
|
110 |
-
torch.cuda.empty_cache()
|
111 |
-
upscaled = refiner(prompt=Prompt, negative_prompt=negative_prompt, image=image, num_inference_steps=15, guidance_scale=0).images[0]
|
112 |
-
torch.cuda.empty_cache()
|
113 |
-
return upscaled
|
114 |
-
else:
|
115 |
-
return image
|
116 |
-
else:
|
117 |
-
if upscale == "Yes":
|
118 |
-
image = disney(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
|
119 |
-
upscaler = DiffusionPipeline.from_pretrained("stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16, use_safetensors=True)
|
120 |
-
upscaler.enable_xformers_memory_efficient_attention()
|
121 |
-
upscaler = upscaler.to(device)
|
122 |
-
torch.cuda.empty_cache()
|
123 |
-
upscaled = upscaler(prompt=Prompt, negative_prompt=negative_prompt, image=image, num_inference_steps=15, guidance_scale=0).images[0]
|
124 |
-
torch.cuda.empty_cache()
|
125 |
-
return upscaled
|
126 |
-
else:
|
127 |
-
image = disney(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
|
128 |
-
torch.cuda.empty_cache()
|
129 |
-
return image
|
130 |
-
|
131 |
-
if Model == "StoryBook":
|
132 |
-
story = DiffusionPipeline.from_pretrained("circulus/canvers-story-v3.9.1", torch_dtype=torch.float16, safety_checker=None) if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("circulus/canvers-story-v3.8.1")
|
133 |
-
story.enable_xformers_memory_efficient_attention()
|
134 |
-
story = story.to(device)
|
135 |
-
torch.cuda.empty_cache()
|
136 |
-
if refine == "Yes":
|
137 |
-
refiner = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", use_safetensors=True, torch_dtype=torch.float16, variant="fp16") if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0")
|
138 |
-
refiner.enable_xformers_memory_efficient_attention()
|
139 |
-
refiner = refiner.to(device)
|
140 |
-
torch.cuda.empty_cache()
|
141 |
-
int_image = story(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images
|
142 |
-
image = refiner(Prompt, negative_prompt=negative_prompt, image=int_image, denoising_start=high_noise_frac).images[0]
|
143 |
-
torch.cuda.empty_cache()
|
144 |
-
|
145 |
-
if upscale == "Yes":
|
146 |
-
refiner = DiffusionPipeline.from_pretrained("stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16, use_safetensors=True)
|
147 |
-
refiner.enable_xformers_memory_efficient_attention()
|
148 |
-
refiner = refiner.to(device)
|
149 |
-
torch.cuda.empty_cache()
|
150 |
-
upscaled = refiner(prompt=Prompt, negative_prompt=negative_prompt, image=image, num_inference_steps=15, guidance_scale=0).images[0]
|
151 |
-
torch.cuda.empty_cache()
|
152 |
-
return upscaled
|
153 |
-
else:
|
154 |
-
return image
|
155 |
-
else:
|
156 |
-
if upscale == "Yes":
|
157 |
-
image = story(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
|
158 |
-
|
159 |
-
upscaler = DiffusionPipeline.from_pretrained("stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16, use_safetensors=True)
|
160 |
-
upscaler.enable_xformers_memory_efficient_attention()
|
161 |
-
upscaler = upscaler.to(device)
|
162 |
-
torch.cuda.empty_cache()
|
163 |
-
upscaled = upscaler(prompt=Prompt, negative_prompt=negative_prompt, image=image, num_inference_steps=15, guidance_scale=0).images[0]
|
164 |
-
torch.cuda.empty_cache()
|
165 |
-
return upscaled
|
166 |
-
else:
|
167 |
-
|
168 |
-
image = story(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
|
169 |
-
torch.cuda.empty_cache()
|
170 |
-
return image
|
171 |
-
|
172 |
-
if Model == "SemiReal":
|
173 |
-
semi = DiffusionPipeline.from_pretrained("circulus/canvers-semi-v3.8.1", torch_dtype=torch.float16, safety_checker=None) if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("circulus/canvers-semi-v3.8.1")
|
174 |
-
semi.enable_xformers_memory_efficient_attention()
|
175 |
-
semi = semi.to(device)
|
176 |
-
torch.cuda.empty_cache()
|
177 |
-
if refine == "Yes":
|
178 |
-
refiner = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", use_safetensors=True, torch_dtype=torch.float16, variant="fp16") if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0")
|
179 |
-
refiner.enable_xformers_memory_efficient_attention()
|
180 |
-
refiner = refiner.to(device)
|
181 |
-
torch.cuda.empty_cache()
|
182 |
-
image = semi(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images
|
183 |
-
image = refiner(Prompt, negative_prompt=negative_prompt, image=image, denoising_start=high_noise_frac).images[0]
|
184 |
-
torch.cuda.empty_cache()
|
185 |
-
|
186 |
-
if upscale == "Yes":
|
187 |
-
refiner = DiffusionPipeline.from_pretrained("stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16, use_safetensors=True)
|
188 |
-
refiner.enable_xformers_memory_efficient_attention()
|
189 |
-
refiner = refiner.to(device)
|
190 |
-
torch.cuda.empty_cache()
|
191 |
-
upscaled = refiner(prompt=Prompt, negative_prompt=negative_prompt, image=image, num_inference_steps=15, guidance_scale=0).images[0]
|
192 |
-
torch.cuda.empty_cache()
|
193 |
-
return upscaled
|
194 |
-
else:
|
195 |
-
return image
|
196 |
-
else:
|
197 |
-
if upscale == "Yes":
|
198 |
-
image = semi(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
|
199 |
-
|
200 |
-
upscaler = DiffusionPipeline.from_pretrained("stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16, use_safetensors=True)
|
201 |
-
upscaler.enable_xformers_memory_efficient_attention()
|
202 |
-
upscaler = upscaler.to(device)
|
203 |
-
torch.cuda.empty_cache()
|
204 |
-
upscaled = upscaler(prompt=Prompt, negative_prompt=negative_prompt, image=image, num_inference_steps=15, guidance_scale=0).images[0]
|
205 |
-
torch.cuda.empty_cache()
|
206 |
-
return upscaled
|
207 |
-
else:
|
208 |
-
|
209 |
-
image = semi(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
|
210 |
-
torch.cuda.empty_cache()
|
211 |
-
return image
|
212 |
-
|
213 |
if Model == "Animagine XL 3.0":
|
214 |
animagine = DiffusionPipeline.from_pretrained("cagliostrolab/animagine-xl-3.0", torch_dtype=torch.float16, safety_checker=None) if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("cagliostrolab/animagine-xl-3.0")
|
215 |
animagine.enable_xformers_memory_efficient_attention()
|
@@ -349,44 +190,10 @@ def genie (Model, Prompt, negative_prompt, height, width, scale, steps, seed, re
|
|
349 |
image = pipe(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
|
350 |
torch.cuda.empty_cache()
|
351 |
return image
|
352 |
-
|
353 |
-
torch.cuda.empty_cache()
|
354 |
-
pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16")
|
355 |
-
pipe.enable_xformers_memory_efficient_attention()
|
356 |
-
pipe = pipe.to(device)
|
357 |
-
image = pipe(prompt=Prompt, num_inference_steps=1, guidance_scale=0.0).images[0]
|
358 |
-
if refine == "Yes":
|
359 |
-
refiner = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", use_safetensors=True, torch_dtype=torch.float16, variant="fp16") if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0")
|
360 |
-
refiner.enable_xformers_memory_efficient_attention()
|
361 |
-
refiner = refiner.to(device)
|
362 |
-
torch.cuda.empty_cache()
|
363 |
-
refined = refiner(Prompt, negative_prompt=negative_prompt, image=image, denoising_start=high_noise_frac).images[0]
|
364 |
-
torch.cuda.empty_cache()
|
365 |
-
if upscale == 'Yes':
|
366 |
-
upscaler = DiffusionPipeline.from_pretrained("stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16, use_safetensors=True)
|
367 |
-
upscaler.enable_xformers_memory_efficient_attention()
|
368 |
-
upscaler = upscaler.to(device)
|
369 |
-
torch.cuda.empty_cache()
|
370 |
-
upscaled = upscaler(prompt=Prompt, negative_prompt=negative_prompt, image=refined, num_inference_steps=5, guidance_scale=0).images[0]
|
371 |
-
torch.cuda.empty_cache()
|
372 |
-
return upscaled
|
373 |
-
else:
|
374 |
-
return refined
|
375 |
-
|
376 |
-
if upscale == "Yes":
|
377 |
-
upscaler = DiffusionPipeline.from_pretrained("stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16, use_safetensors=True)
|
378 |
-
upscaler.enable_xformers_memory_efficient_attention()
|
379 |
-
upscaler = upscaler.to(device)
|
380 |
-
torch.cuda.empty_cache()
|
381 |
-
upscaled = upscaler(prompt=Prompt, negative_prompt=negative_prompt, image=image, num_inference_steps=5, guidance_scale=0).images[0]
|
382 |
-
torch.cuda.empty_cache()
|
383 |
-
return upscaled
|
384 |
-
else:
|
385 |
-
image = pipe(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
|
386 |
-
torch.cuda.empty_cache()
|
387 |
return image
|
388 |
|
389 |
-
gr.Interface(fn=genie, inputs=[gr.Radio(['PhotoReal', '
|
390 |
gr.Textbox(label='What you want the AI to generate. 77 Token Limit.'),
|
391 |
gr.Textbox(label='What you Do Not want the AI to generate. 77 Token Limit'),
|
392 |
gr.Slider(512, 1024, 768, step=128, label='Height'),
|
@@ -398,6 +205,6 @@ gr.Interface(fn=genie, inputs=[gr.Radio(['PhotoReal', 'Anime', 'Disney', 'StoryB
|
|
398 |
gr.Slider(minimum=.9, maximum=.99, value=.95, step=.01, label='Refiner Denoise Start %'),
|
399 |
gr.Radio(["Yes", "No"], label = 'SD X2 Latent Upscaler?', value="No")],
|
400 |
outputs=gr.Image(label='Generated Image'),
|
401 |
-
title="Manju Dream Booth
|
402 |
description="<br><br><b/>Warning: This Demo is capable of producing NSFW content.",
|
403 |
article = "If You Enjoyed this Demo and would like to Donate, you can send any amount to any of these Wallets. <br><br>SHIB (BEP20): 0xbE8f2f3B71DFEB84E5F7E3aae1909d60658aB891 <br>PayPal: https://www.paypal.me/ManjushriBodhisattva <br>ETH: 0xbE8f2f3B71DFEB84E5F7E3aae1909d60658aB891 <br>DOGE: D9QdVPtcU1EFH8jDC8jhU9uBcSTqUiA8h6<br><br>Code Monkey: <a href=\"https://huggingface.co/Manjushri\">Manjushri</a>").launch(debug=True, max_threads=80)
|
|
|
51 |
torch.cuda.empty_cache()
|
52 |
return image
|
53 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
if Model == "Animagine XL 3.0":
|
55 |
animagine = DiffusionPipeline.from_pretrained("cagliostrolab/animagine-xl-3.0", torch_dtype=torch.float16, safety_checker=None) if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("cagliostrolab/animagine-xl-3.0")
|
56 |
animagine.enable_xformers_memory_efficient_attention()
|
|
|
190 |
image = pipe(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
|
191 |
torch.cuda.empty_cache()
|
192 |
return image
|
193 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
194 |
return image
|
195 |
|
196 |
+
gr.Interface(fn=genie, inputs=[gr.Radio(['PhotoReal', 'Animagine XL 3.0', 'SDXL 1.0', 'FusionXL',], value='PhotoReal', label='Choose Model'),
|
197 |
gr.Textbox(label='What you want the AI to generate. 77 Token Limit.'),
|
198 |
gr.Textbox(label='What you Do Not want the AI to generate. 77 Token Limit'),
|
199 |
gr.Slider(512, 1024, 768, step=128, label='Height'),
|
|
|
205 |
gr.Slider(minimum=.9, maximum=.99, value=.95, step=.01, label='Refiner Denoise Start %'),
|
206 |
gr.Radio(["Yes", "No"], label = 'SD X2 Latent Upscaler?', value="No")],
|
207 |
outputs=gr.Image(label='Generated Image'),
|
208 |
+
title="Manju Dream Booth V2.0 with SDXL 1.0 Refiner and SD X2 Latent Upscaler - GPU",
|
209 |
description="<br><br><b/>Warning: This Demo is capable of producing NSFW content.",
|
210 |
article = "If You Enjoyed this Demo and would like to Donate, you can send any amount to any of these Wallets. <br><br>SHIB (BEP20): 0xbE8f2f3B71DFEB84E5F7E3aae1909d60658aB891 <br>PayPal: https://www.paypal.me/ManjushriBodhisattva <br>ETH: 0xbE8f2f3B71DFEB84E5F7E3aae1909d60658aB891 <br>DOGE: D9QdVPtcU1EFH8jDC8jhU9uBcSTqUiA8h6<br><br>Code Monkey: <a href=\"https://huggingface.co/Manjushri\">Manjushri</a>").launch(debug=True, max_threads=80)
|