Spaces:
Running
on
T4
Running
on
T4
Update app.py
Browse files
app.py
CHANGED
@@ -79,33 +79,10 @@ def genie (Model, Prompt, negative_prompt, height, width, scale, steps, seed, re
|
|
79 |
image = sdxl(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
|
80 |
torch.cuda.empty_cache()
|
81 |
return image
|
82 |
-
|
83 |
-
if Model == 'FusionXL':
|
84 |
-
torch.cuda.empty_cache()
|
85 |
-
torch.cuda.max_memory_allocated(device=device)
|
86 |
-
pipe = DiffusionPipeline.from_pretrained("circulus/canvers-fusionXL-v1", torch_dtype=torch.float16, safety_checker=None) if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("circulus/canvers-real-v3.8.1")
|
87 |
-
pipe.enable_xformers_memory_efficient_attention()
|
88 |
-
pipe = pipe.to(device)
|
89 |
-
torch.cuda.empty_cache()
|
90 |
-
if refine == "Yes":
|
91 |
-
torch.cuda.empty_cache()
|
92 |
-
torch.cuda.max_memory_allocated(device=device)
|
93 |
-
int_image = pipe(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale, output_type="latent").images
|
94 |
-
pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", use_safetensors=True, torch_dtype=torch.float16, variant="fp16") if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0")
|
95 |
-
pipe.enable_xformers_memory_efficient_attention()
|
96 |
-
pipe = pipe.to(device)
|
97 |
-
torch.cuda.empty_cache()
|
98 |
-
image = pipe(Prompt, negative_prompt=negative_prompt, image=int_image, denoising_start=high_noise_frac).images[0]
|
99 |
-
torch.cuda.empty_cache()
|
100 |
-
return image
|
101 |
-
else:
|
102 |
-
image = pipe(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
|
103 |
-
torch.cuda.empty_cache()
|
104 |
-
return image
|
105 |
|
106 |
return image
|
107 |
|
108 |
-
gr.Interface(fn=genie, inputs=[gr.Radio(['PhotoReal', 'Animagine XL 3.0', 'SDXL 1.0',
|
109 |
gr.Textbox(label='What you want the AI to generate. 77 Token Limit.'),
|
110 |
gr.Textbox(label='What you Do Not want the AI to generate. 77 Token Limit'),
|
111 |
gr.Slider(512, 1024, 768, step=128, label='Height'),
|
|
|
79 |
image = sdxl(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
|
80 |
torch.cuda.empty_cache()
|
81 |
return image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
|
83 |
return image
|
84 |
|
85 |
+
gr.Interface(fn=genie, inputs=[gr.Radio(['PhotoReal', 'Animagine XL 3.0', 'SDXL 1.0',], value='PhotoReal', label='Choose Model'),
|
86 |
gr.Textbox(label='What you want the AI to generate. 77 Token Limit.'),
|
87 |
gr.Textbox(label='What you Do Not want the AI to generate. 77 Token Limit'),
|
88 |
gr.Slider(512, 1024, 768, step=128, label='Height'),
|