Spaces:
Running
on
T4
Running
on
T4
import gradio as gr | |
import torch | |
import numpy as np | |
import modin.pandas as pd | |
from PIL import Image | |
from diffusers import DiffusionPipeline, StableDiffusionLatentUpscalePipeline | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
pipe = DiffusionPipeline.from_pretrained("dreamlike-art/dreamlike-photoreal-2.0", torch_dtype=torch.float16, safety_checker=None) | |
upscaler = StableDiffusionLatentUpscalePipeline.from_pretrained("stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16) | |
upscaler = upscaler.to(device) | |
pipe = pipe.to(device) | |
def genie (Prompt, scale, steps, Seed): | |
generator = torch.Generator(device=device).manual_seed(Seed) | |
#images = pipe(prompt, num_inference_steps=steps, guidance_scale=scale, generator=generator).images[0] | |
low_res_latents = pipe(Prompt, num_inference_steps=steps, guidance_scale=scale, generator=generator, output_type="latent").images | |
upscaled_image = upscaler(prompt='', image=low_res_latents, num_inference_steps=5, guidance_scale=0, generator=generator).images[0] | |
return upscaled_image | |
gr.Interface(fn=genie, inputs=[gr.Textbox(label='What you want the AI to generate. 77 Token Limit.'), | |
gr.Slider(1, maximum=15, value=10, step=.25, label='Prompt Guidance Scale:', interactive=True), | |
gr.Slider(1, maximum=100, value=50, step=1, label='Number of Iterations: 50 is typically fine.'), | |
gr.Slider(minimum=1, step=10, maximum=999999999999999999, randomize=True, interactive=True)], | |
outputs=gr.Image(label='512x512 Generated Image'), | |
title="PhotoReal V2 with SD x2 Upscaler - GPU", | |
description="<br><br><b/>Warning: This Demo is capable of producing NSFW content.", | |
article = "Code Monkey: <a href=\"https://huggingface.co/Manjushri\">Manjushri</a>").launch(debug=True, max_threads=True) |