Spaces:
Sleeping
Sleeping
ManjinderUNCC
commited on
Upload gradio_interface.py
Browse files- gradio_interface.py +63 -0
gradio_interface.py
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import spacy
|
3 |
+
from sklearn.metrics import classification_report, accuracy_score, f1_score, precision_score, recall_score
|
4 |
+
|
5 |
+
# Load the trained spaCy model
|
6 |
+
model_path = "./my_trained_model"
|
7 |
+
nlp = spacy.load(model_path)
|
8 |
+
|
9 |
+
# Threshold for classification
|
10 |
+
threshold = 0.21
|
11 |
+
|
12 |
+
# Function to classify text
|
13 |
+
def classify_text(text):
|
14 |
+
doc = nlp(text)
|
15 |
+
predicted_labels = doc.cats
|
16 |
+
return predicted_labels
|
17 |
+
|
18 |
+
# Function to evaluate the predicted labels for the input text
|
19 |
+
def evaluate_text(input_text):
|
20 |
+
# Get the predicted labels for the input text
|
21 |
+
doc = nlp(input_text)
|
22 |
+
predicted_labels = {label: score > threshold for label, score in doc.cats.items()}
|
23 |
+
|
24 |
+
# Assuming you have ground truth labels for the input text, you would compare the predicted labels with the ground truth labels here.
|
25 |
+
# For demonstration purposes, let's assume the ground truth labels are provided here.
|
26 |
+
ground_truth_labels = {
|
27 |
+
"CapitalRequirements": 0,
|
28 |
+
"ConsumerProtection": 1,
|
29 |
+
"RiskManagement": 0,
|
30 |
+
"ReportingAndCompliance": 1,
|
31 |
+
"CorporateGovernance": 0
|
32 |
+
}
|
33 |
+
|
34 |
+
# Convert predicted and ground truth labels to lists
|
35 |
+
predicted_labels_list = [1 if predicted_labels[label] else 0 for label in predicted_labels]
|
36 |
+
ground_truth_labels_list = [ground_truth_labels[label] for label in predicted_labels]
|
37 |
+
|
38 |
+
# Calculate evaluation metrics
|
39 |
+
accuracy = accuracy_score(ground_truth_labels_list, predicted_labels_list)
|
40 |
+
precision = precision_score(ground_truth_labels_list, predicted_labels_list, average='weighted')
|
41 |
+
recall = recall_score(ground_truth_labels_list, predicted_labels_list, average='weighted')
|
42 |
+
f1 = f1_score(ground_truth_labels_list, predicted_labels_list, average='weighted')
|
43 |
+
|
44 |
+
# Additional classification report
|
45 |
+
report = classification_report(ground_truth_labels_list, predicted_labels_list)
|
46 |
+
|
47 |
+
# Construct output dictionary
|
48 |
+
output_dict = {
|
49 |
+
"PredictedLabels": predicted_labels,
|
50 |
+
"EvaluationMetrics": {
|
51 |
+
"Accuracy": accuracy,
|
52 |
+
"Precision": precision,
|
53 |
+
"Recall": recall,
|
54 |
+
"F1-Score": f1,
|
55 |
+
"ClassificationReport": report
|
56 |
+
}
|
57 |
+
}
|
58 |
+
|
59 |
+
return output_dict
|
60 |
+
|
61 |
+
# Gradio Interface
|
62 |
+
iface = gr.Interface(fn=evaluate_text, inputs="text", outputs="json", title="Text Evaluation-Manjinder", description="Enter your text")
|
63 |
+
iface.launch(share=True)
|