PDF-ChatBot-BCS / app.py
Manglik-R's picture
Update app.py
7f11de5
raw
history blame
3.27 kB
import gradio as gr
from langchain.document_loaders import OnlinePDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings import HuggingFaceHubEmbeddings
from langchain.vectorstores import FAISS
from langchain.llms import HuggingFaceHub
from langchain.chains import RetrievalQA
from datasets import load_dataset
import os
key = os.environ.get('RLS')
os.environ["HUGGINGFACEHUB_API_TOKEN"] = key
import sentence_transformers
import faiss
def loading_pdf():
return "Loading..."
def pdf_changes(pdf_doc):
loader = OnlinePDFLoader(pdf_doc.name)
pages = loader.load_and_split()
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1024,
chunk_overlap=64,
separators=['\n\n', '\n', '(?=>\. )', ' ', '']
)
docs = text_splitter.split_documents(pages)
embeddings = HuggingFaceHubEmbeddings()
db = FAISS.from_documents(docs, embeddings)
llm=HuggingFaceHub(repo_id="google/flan-t5-xxl", model_kwargs={"temperature":1, "max_length":1000000})
global qa
qa = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=db.as_retriever(search_kwargs={"k": 3}))
return "Ready"
def book_changes(book):
db = FAISS.load_local( book , embeddings = HuggingFaceHubEmbeddings() )
llm=HuggingFaceHub(repo_id="google/flan-t5-xxl", model_kwargs={"temperature":1, "max_length":1000000})
global qa
qa = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=db.as_retriever(search_kwargs={"k": 3}))
return "Ready"
def add_text(history, text):
history = history + [(text, None)]
return history, ""
def bot(history):
response = infer(history[-1][0])
history[-1][1] = response['result']
return history
def infer(question):
query = question
result = qa({"query": query})
return result
css="""
#col-container {max-width: 700px; margin-left: auto; margin-right: auto;}
"""
title = """
<div style="text-align: center;max-width: 700px;">
<h1>Chat with PDF</h1>
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.HTML(title)
with gr.Column():
pdf_doc = gr.File(label="Load a PDF", file_types=['.pdf'], type="file")
load_pdf = gr.Button("Load PDF")
Books = gr.Dropdown(label="Books", choices=[("Book 1","Book1.faiss") , ("Book 2","Book2.faiss") , ("Book 3","Book3.faiss")] )
langchain_status = gr.Textbox(label="Status", placeholder="", interactive=False)
chatbot = gr.Chatbot([], elem_id="chatbot").style(height=350)
question = gr.Textbox(label="Question", placeholder="Type your question and hit Enter ")
submit_btn = gr.Button("Send message")
#load_pdf.click(loading_pdf, None, langchain_status, queue=False)
Books.change(book_changes, inputs=[Books], outputs=[langchain_status], queue=False)
load_pdf.click(pdf_changes, inputs=[pdf_doc], outputs=[langchain_status], queue=False)
question.submit(add_text, [chatbot, question], [chatbot, question]).then(
bot, chatbot, chatbot
)
submit_btn.click(add_text, [chatbot, question], [chatbot, question]).then(
bot, chatbot, chatbot
)
demo.launch()