Spaces:
Sleeping
Sleeping
import gradio as gr | |
from langchain.document_loaders import OnlinePDFLoader | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain.embeddings import HuggingFaceHubEmbeddings | |
from langchain.vectorstores import FAISS | |
from langchain.llms import HuggingFaceHub | |
from langchain.chains import RetrievalQA | |
from datasets import load_dataset | |
import os | |
key = os.environ.get('RLS') | |
os.environ["HUGGINGFACEHUB_API_TOKEN"] = key | |
import sentence_transformers | |
import faiss | |
def loading_pdf(): | |
return "Loading..." | |
def pdf_changes(pdf_doc): | |
loader = OnlinePDFLoader(pdf_doc.name) | |
pages = loader.load_and_split() | |
text_splitter = RecursiveCharacterTextSplitter( | |
chunk_size=1024, | |
chunk_overlap=64, | |
separators=['\n\n', '\n', '(?=>\. )', ' ', ''] | |
) | |
docs = text_splitter.split_documents(pages) | |
embeddings = HuggingFaceHubEmbeddings() | |
db = FAISS.from_documents(docs, embeddings) | |
llm=HuggingFaceHub(repo_id="google/flan-t5-xxl", model_kwargs={"temperature":1, "max_length":1000000}) | |
global qa | |
qa = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=db.as_retriever(search_kwargs={"k": 3})) | |
return "Ready" | |
def book_changes(book): | |
db = FAISS.load_local( book , embeddings = HuggingFaceHubEmbeddings() ) | |
llm=HuggingFaceHub(repo_id="google/flan-t5-xxl", model_kwargs={"temperature":1, "max_length":1000000}) | |
global qa | |
qa = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=db.as_retriever(search_kwargs={"k": 3})) | |
return "Ready" | |
def add_text(history, text): | |
history = history + [(text, None)] | |
return history, "" | |
def bot(history): | |
response = infer(history[-1][0]) | |
history[-1][1] = response['result'] | |
return history | |
def infer(question): | |
query = question | |
result = qa({"query": query}) | |
return result | |
css=""" | |
#col-container {max-width: 700px; margin-left: auto; margin-right: auto;} | |
""" | |
title = """ | |
<div style="text-align: center;max-width: 700px;"> | |
<h1>Chat with PDF</h1> | |
""" | |
with gr.Blocks(css=css) as demo: | |
with gr.Column(elem_id="col-container"): | |
gr.HTML(title) | |
with gr.Column(): | |
pdf_doc = gr.File(label="Load a PDF", file_types=['.pdf'], type="file") | |
load_pdf = gr.Button("Load PDF") | |
Books = gr.Dropdown(label="Books", choices=[("Book 1","Book1.faiss") , ("Book 2","Book2.faiss") , ("Book 3","Book3.faiss")] ) | |
langchain_status = gr.Textbox(label="Status", placeholder="", interactive=False) | |
chatbot = gr.Chatbot([], elem_id="chatbot").style(height=350) | |
question = gr.Textbox(label="Question", placeholder="Type your question and hit Enter ") | |
submit_btn = gr.Button("Send message") | |
#load_pdf.click(loading_pdf, None, langchain_status, queue=False) | |
Books.change(book_changes, inputs=[Books], outputs=[langchain_status], queue=False) | |
load_pdf.click(pdf_changes, inputs=[pdf_doc], outputs=[langchain_status], queue=False) | |
question.submit(add_text, [chatbot, question], [chatbot, question]).then( | |
bot, chatbot, chatbot | |
) | |
submit_btn.click(add_text, [chatbot, question], [chatbot, question]).then( | |
bot, chatbot, chatbot | |
) | |
demo.launch() | |