Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,55 +1,131 @@
|
|
1 |
-
import numpy as np
|
2 |
-
import tensorflow
|
3 |
-
|
4 |
-
from tensorflow.keras.preprocessing import image
|
5 |
-
from tensorflow.keras.layers import GlobalMaxPooling2D
|
6 |
-
from tensorflow.keras.applications.resnet50 import ResNet50,preprocess_input
|
7 |
-
from numpy.linalg import norm
|
8 |
-
import os
|
9 |
-
from tqdm import tqdm
|
10 |
-
import pickle
|
11 |
-
|
12 |
-
model = ResNet50(weights="imagenet", include_top=False,input_shape=(224,224,3))
|
13 |
-
model.trainable=False
|
14 |
-
|
15 |
-
model1 = tensorflow.keras.Sequential([
|
16 |
-
model,
|
17 |
-
GlobalMaxPooling2D()
|
18 |
-
])
|
19 |
-
|
20 |
-
def extract_features(img_path,model):
|
21 |
-
img=image.load_img(img_path,target_size = (224,224))
|
22 |
-
image_array = image.img_to_array(img)
|
23 |
-
expanded_image_array = np.expand_dims(image_array,axis=0)
|
24 |
-
processed_image = preprocess_input(expanded_image_array)
|
25 |
-
result = model.predict(processed_image).flatten()
|
26 |
-
normalized_result=result/norm(result)
|
27 |
-
return normalized_result
|
28 |
-
|
29 |
-
filenames =[]
|
30 |
-
|
31 |
-
for file in os.listdir('set0'):
|
32 |
-
filenames.append(os.path.join('set0',file))
|
33 |
-
|
34 |
-
for file in os.listdir('set1'):
|
35 |
-
filenames.append(os.path.join('set1',file))
|
36 |
-
|
37 |
-
for file in os.listdir('set2'):
|
38 |
-
filenames.append(os.path.join('set2',file))
|
39 |
-
|
40 |
-
for file in os.listdir('set3'):
|
41 |
-
filenames.append(os.path.join('set3',file))
|
42 |
-
|
43 |
-
for file in os.listdir('set4'):
|
44 |
-
filenames.append(os.path.join('set4',file))
|
45 |
-
|
46 |
-
feature_list = []
|
47 |
-
|
48 |
-
for i in tqdm(filenames):
|
49 |
-
feature_list.append(extract_features(i,model1))
|
50 |
-
|
51 |
-
print(np.array(feature_list).shape)
|
52 |
-
|
53 |
-
import pickle
|
54 |
-
pickle.dump(feature_list,open('embeddings2.pkl','wb'))
|
55 |
-
pickle.dump(filenames,open('filenames2.pkl','wb'))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import tensorflow
|
3 |
+
|
4 |
+
from tensorflow.keras.preprocessing import image
|
5 |
+
from tensorflow.keras.layers import GlobalMaxPooling2D
|
6 |
+
from tensorflow.keras.applications.resnet50 import ResNet50,preprocess_input
|
7 |
+
from numpy.linalg import norm
|
8 |
+
import os
|
9 |
+
from tqdm import tqdm
|
10 |
+
import pickle
|
11 |
+
|
12 |
+
model = ResNet50(weights="imagenet", include_top=False,input_shape=(224,224,3))
|
13 |
+
model.trainable=False
|
14 |
+
|
15 |
+
model1 = tensorflow.keras.Sequential([
|
16 |
+
model,
|
17 |
+
GlobalMaxPooling2D()
|
18 |
+
])
|
19 |
+
|
20 |
+
def extract_features(img_path,model):
|
21 |
+
img=image.load_img(img_path,target_size = (224,224))
|
22 |
+
image_array = image.img_to_array(img)
|
23 |
+
expanded_image_array = np.expand_dims(image_array,axis=0)
|
24 |
+
processed_image = preprocess_input(expanded_image_array)
|
25 |
+
result = model.predict(processed_image).flatten()
|
26 |
+
normalized_result=result/norm(result)
|
27 |
+
return normalized_result
|
28 |
+
|
29 |
+
filenames =[]
|
30 |
+
|
31 |
+
for file in os.listdir('set0'):
|
32 |
+
filenames.append(os.path.join('set0',file))
|
33 |
+
|
34 |
+
for file in os.listdir('set1'):
|
35 |
+
filenames.append(os.path.join('set1',file))
|
36 |
+
|
37 |
+
for file in os.listdir('set2'):
|
38 |
+
filenames.append(os.path.join('set2',file))
|
39 |
+
|
40 |
+
for file in os.listdir('set3'):
|
41 |
+
filenames.append(os.path.join('set3',file))
|
42 |
+
|
43 |
+
for file in os.listdir('set4'):
|
44 |
+
filenames.append(os.path.join('set4',file))
|
45 |
+
|
46 |
+
feature_list = []
|
47 |
+
|
48 |
+
for i in tqdm(filenames):
|
49 |
+
feature_list.append(extract_features(i,model1))
|
50 |
+
|
51 |
+
print(np.array(feature_list).shape)
|
52 |
+
|
53 |
+
import pickle
|
54 |
+
pickle.dump(feature_list,open('embeddings2.pkl','wb'))
|
55 |
+
pickle.dump(filenames,open('filenames2.pkl','wb'))
|
56 |
+
|
57 |
+
|
58 |
+
import streamlit as st
|
59 |
+
import os
|
60 |
+
from PIL import Image
|
61 |
+
import pickle
|
62 |
+
import tensorflow
|
63 |
+
import numpy as np
|
64 |
+
from numpy.linalg import norm
|
65 |
+
from tensorflow.keras.preprocessing import image
|
66 |
+
from tensorflow.keras.layers import GlobalMaxPooling2D
|
67 |
+
from tensorflow.keras.applications.resnet50 import ResNet50, preprocess_input
|
68 |
+
from sklearn.neighbors import NearestNeighbors
|
69 |
+
|
70 |
+
feature_list = np.array(pickle.load(open('embeddings2.pkl', 'rb')))
|
71 |
+
filenames = pickle.load(open('filenames2.pkl', 'rb'))
|
72 |
+
|
73 |
+
model = ResNet50(weights='imagenet', include_top=False, input_shape=(224, 224, 3))
|
74 |
+
model.trainable = False
|
75 |
+
|
76 |
+
model = tensorflow.keras.Sequential([
|
77 |
+
model,
|
78 |
+
GlobalMaxPooling2D()
|
79 |
+
])
|
80 |
+
|
81 |
+
st.title("Fashion Recommender System")
|
82 |
+
|
83 |
+
|
84 |
+
def extract_features(img_path, model):
|
85 |
+
img = image.load_img(img_path, target_size=(224, 224))
|
86 |
+
image_array = image.img_to_array(img)
|
87 |
+
expanded_image_array = np.expand_dims(image_array, axis=0)
|
88 |
+
processed_image = preprocess_input(expanded_image_array)
|
89 |
+
result = model.predict(processed_image).flatten()
|
90 |
+
normalized_result = result / norm(result)
|
91 |
+
return normalized_result
|
92 |
+
|
93 |
+
def recommend(features,feature_list):
|
94 |
+
neighbors = NearestNeighbors(n_neighbors=5, algorithm='brute', metric='euclidean')
|
95 |
+
neighbors.fit(feature_list)
|
96 |
+
|
97 |
+
distances, indices = neighbors.kneighbors([features])
|
98 |
+
return indices
|
99 |
+
|
100 |
+
|
101 |
+
def save_uploaded_file(uploaded_file):
|
102 |
+
try:
|
103 |
+
with open(os.path.join('uploads', uploaded_file.name), 'wb') as f:
|
104 |
+
f.write(uploaded_file.getbuffer())
|
105 |
+
return 1
|
106 |
+
except:
|
107 |
+
return 0
|
108 |
+
|
109 |
+
|
110 |
+
uploaded_file = st.file_uploader("choose an image")
|
111 |
+
|
112 |
+
if uploaded_file is not None:
|
113 |
+
if save_uploaded_file(uploaded_file):
|
114 |
+
display_image = Image.open(uploaded_file)
|
115 |
+
st.image(display_image)
|
116 |
+
features = extract_features(os.path.join("uploads",uploaded_file.name),model)
|
117 |
+
#st.text(features)
|
118 |
+
indices = recommend(features,feature_list)
|
119 |
+
col1,col2,col3,col4,col5 = st.columns(5)
|
120 |
+
with col1:
|
121 |
+
st.image(filenames[indices[0][0]])
|
122 |
+
with col2:
|
123 |
+
st.image(filenames[indices[0][1]])
|
124 |
+
with col3:
|
125 |
+
st.image(filenames[indices[0][2]])
|
126 |
+
with col4:
|
127 |
+
st.image(filenames[indices[0][3]])
|
128 |
+
with col5:
|
129 |
+
st.image(filenames[indices[0][4]])
|
130 |
+
else:
|
131 |
+
st.header("Some error has occured while uploading file")
|