Manasa B Rao
Add files via upload
4b3eeff unverified
import pickle
import tensorflow
import numpy as np
from numpy.linalg import norm
from tensorflow.keras.preprocessing import image
from tensorflow.keras.layers import GlobalMaxPooling2D
from tensorflow.keras.applications.resnet50 import ResNet50,preprocess_input
from sklearn.neighbors import NearestNeighbors
import cv2
feature_list = np.array(pickle.load(open('embeddings.pkl','rb')))
filenames = pickle.load(open('filenames.pkl','rb'))
model = ResNet50(weights='imagenet',include_top=False,input_shape=(224,224,3))
model.trainable = False
model = tensorflow.keras.Sequential([
model,
GlobalMaxPooling2D()
])
img = image.load_img('sample/i4.jpg',target_size=(224,224))
img_array = image.img_to_array(img)
expanded_img_array = np.expand_dims(img_array, axis=0)
preprocessed_img = preprocess_input(expanded_img_array)
result = model.predict(preprocessed_img).flatten()
normalized_result = result / norm(result)
neighbors = NearestNeighbors(n_neighbors=5,algorithm='brute',metric='euclidean')
neighbors.fit(feature_list)
distances,indices = neighbors.kneighbors([normalized_result])
print(indices)
for file in indices[0][0:5]:
temp_img = cv2.imread(filenames[file])
cv2.imshow('output',cv2.resize(temp_img,(512,512)))
cv2.waitKey(0)
distances,indices = neighbors.kneighbors([normalized_result])
print(indices)