Spaces:
Sleeping
Sleeping
import pickle | |
import tensorflow | |
import numpy as np | |
from numpy.linalg import norm | |
from tensorflow.keras.preprocessing import image | |
from tensorflow.keras.layers import GlobalMaxPooling2D | |
from tensorflow.keras.applications.resnet50 import ResNet50,preprocess_input | |
from sklearn.neighbors import NearestNeighbors | |
import cv2 | |
feature_list = np.array(pickle.load(open('embeddings.pkl','rb'))) | |
filenames = pickle.load(open('filenames.pkl','rb')) | |
model = ResNet50(weights='imagenet',include_top=False,input_shape=(224,224,3)) | |
model.trainable = False | |
model = tensorflow.keras.Sequential([ | |
model, | |
GlobalMaxPooling2D() | |
]) | |
img = image.load_img('sample/i4.jpg',target_size=(224,224)) | |
img_array = image.img_to_array(img) | |
expanded_img_array = np.expand_dims(img_array, axis=0) | |
preprocessed_img = preprocess_input(expanded_img_array) | |
result = model.predict(preprocessed_img).flatten() | |
normalized_result = result / norm(result) | |
neighbors = NearestNeighbors(n_neighbors=5,algorithm='brute',metric='euclidean') | |
neighbors.fit(feature_list) | |
distances,indices = neighbors.kneighbors([normalized_result]) | |
print(indices) | |
for file in indices[0][0:5]: | |
temp_img = cv2.imread(filenames[file]) | |
cv2.imshow('output',cv2.resize(temp_img,(512,512))) | |
cv2.waitKey(0) | |
distances,indices = neighbors.kneighbors([normalized_result]) | |
print(indices) |