Spaces:
Sleeping
Sleeping
import streamlit as st | |
import os | |
from PIL import Image | |
import pickle | |
import tensorflow | |
import numpy as np | |
from numpy.linalg import norm | |
from tensorflow.keras.preprocessing import image | |
from tensorflow.keras.layers import GlobalMaxPooling2D | |
from tensorflow.keras.applications.resnet50 import ResNet50, preprocess_input | |
from sklearn.neighbors import NearestNeighbors | |
feature_list = pickle.load(open('embeddings2.pkl', 'rb')) | |
filenames = pickle.load(open('filenames2.pkl', 'rb')) | |
# Normalize paths if necessary (optional redundancy check) | |
filenames = [filename.replace('\\', '/') for filename in filenames] | |
model = ResNet50(weights='imagenet', include_top=False, input_shape=(224, 224, 3)) | |
model.trainable = False | |
model = tensorflow.keras.Sequential([ | |
model, | |
GlobalMaxPooling2D() | |
]) | |
st.title("Fashion Recommender System") | |
def extract_features(img_path, model): | |
img = image.load_img(img_path, target_size=(224, 224)) | |
image_array = image.img_to_array(img) | |
expanded_image_array = np.expand_dims(image_array, axis=0) | |
processed_image = preprocess_input(expanded_image_array) | |
result = model.predict(processed_image).flatten() | |
normalized_result = result / norm(result) | |
return normalized_result | |
def recommend(features,feature_list): | |
neighbors = NearestNeighbors(n_neighbors=5, algorithm='brute', metric='euclidean') | |
neighbors.fit(feature_list) | |
distances, indices = neighbors.kneighbors([features]) | |
return indices | |
def save_uploaded_file(uploaded_file): | |
try: | |
with open(os.path.join('uploads', uploaded_file.name), 'wb') as f: | |
f.write(uploaded_file.getbuffer()) | |
return 1 | |
except: | |
return 0 | |
uploaded_file = st.file_uploader("choose an image") | |
if uploaded_file is not None: | |
if save_uploaded_file(uploaded_file): | |
display_image = Image.open(uploaded_file) | |
st.image(display_image) | |
features = extract_features(os.path.join("uploads",uploaded_file.name),model) | |
#st.text(features) | |
indices = recommend(features,feature_list) | |
col1,col2,col3,col4,col5 = st.columns(5) | |
with col1: | |
st.image(filenames[indices[0][0]]) | |
with col2: | |
st.image(filenames[indices[0][1]]) | |
with col3: | |
st.image(filenames[indices[0][2]]) | |
with col4: | |
st.image(filenames[indices[0][3]]) | |
with col5: | |
st.image(filenames[indices[0][4]]) | |
else: | |
st.header("Some error has occured while uploading file") | |