First_agent_template / Gradio_UI.py
Malofi's picture
Update Gradio_UI.py
85ae093 verified
#!/usr/bin/env python
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import mimetypes
import os
import re
import shutil
import tempfile # Import für temporäre Dateien
from typing import Optional
# Importiere PIL für Bildverarbeitung (füge 'Pillow' zu requirements.txt hinzu, falls nicht vorhanden)
try:
from PIL import Image
except ImportError:
print("WARNUNG: Pillow nicht installiert. Bildanzeige funktioniert möglicherweise nicht. Führe 'pip install Pillow' aus oder füge 'Pillow' zu requirements.txt hinzu.")
Image = None
from smolagents.agent_types import AgentAudio, AgentImage, AgentText, handle_agent_output_types
from smolagents.agents import ActionStep, MultiStepAgent
from smolagents.memory import MemoryStep
from smolagents.utils import _is_package_available
def pull_messages_from_step(
step_log: MemoryStep,
):
"""Extract ChatMessage objects from agent steps with proper nesting"""
import gradio as gr
# --- (Rest dieser Funktion bleibt unverändert) ---
if isinstance(step_log, ActionStep):
# Output the step number
step_number = f"Step {step_log.step_number}" if step_log.step_number is not None else ""
yield gr.ChatMessage(role="assistant", content=f"**{step_number}**")
# First yield the thought/reasoning from the LLM
if hasattr(step_log, "model_output") and step_log.model_output is not None:
# Clean up the LLM output
model_output = step_log.model_output.strip()
# Remove any trailing <end_code> and extra backticks, handling multiple possible formats
model_output = re.sub(r"```\s*<end_code>", "```", model_output) # handles ```<end_code>
model_output = re.sub(r"<end_code>\s*```", "```", model_output) # handles <end_code>```
model_output = re.sub(r"```\s*\n\s*<end_code>", "```", model_output) # handles ```\n<end_code>
model_output = model_output.strip()
yield gr.ChatMessage(role="assistant", content=model_output)
# For tool calls, create a parent message
if hasattr(step_log, "tool_calls") and step_log.tool_calls is not None:
first_tool_call = step_log.tool_calls[0]
used_code = first_tool_call.name == "python_interpreter"
parent_id = f"call_{len(step_log.tool_calls)}"
# Tool call becomes the parent message with timing info
# First we will handle arguments based on type
args = first_tool_call.arguments
if isinstance(args, dict):
content = str(args.get("answer", str(args)))
else:
content = str(args).strip()
if used_code:
# Clean up the content by removing any end code tags
content = re.sub(r"```.*?\n", "", content) # Remove existing code blocks
content = re.sub(r"\s*<end_code>\s*", "", content) # Remove end_code tags
content = content.strip()
if not content.startswith("```python"):
content = f"```python\n{content}\n```"
parent_message_tool = gr.ChatMessage(
role="assistant",
content=content,
metadata={
"title": f"🛠️ Used tool {first_tool_call.name}",
"id": parent_id,
"status": "pending",
},
)
yield parent_message_tool
# Nesting execution logs under the tool call if they exist
if hasattr(step_log, "observations") and (
step_log.observations is not None and step_log.observations.strip()
): # Only yield execution logs if there's actual content
log_content = step_log.observations.strip()
if log_content:
log_content = re.sub(r"^Execution logs:\s*", "", log_content)
yield gr.ChatMessage(
role="assistant",
content=f"{log_content}",
metadata={"title": "📝 Execution Logs", "parent_id": parent_id, "status": "done"},
)
# Nesting any errors under the tool call
if hasattr(step_log, "error") and step_log.error is not None:
yield gr.ChatMessage(
role="assistant",
content=str(step_log.error),
metadata={"title": "💥 Error", "parent_id": parent_id, "status": "done"},
)
# Update parent message metadata to done status without yielding a new message
parent_message_tool.metadata["status"] = "done"
# Handle standalone errors but not from tool calls
elif hasattr(step_log, "error") and step_log.error is not None:
yield gr.ChatMessage(role="assistant", content=str(step_log.error), metadata={"title": "💥 Error"})
# Calculate duration and token information
step_footnote = f"{step_number}"
if hasattr(step_log, "input_token_count") and hasattr(step_log, "output_token_count"):
token_str = (
f" | Input-tokens:{step_log.input_token_count:,} | Output-tokens:{step_log.output_token_count:,}"
)
step_footnote += token_str
if hasattr(step_log, "duration"):
step_duration = f" | Duration: {round(float(step_log.duration), 2)}" if step_log.duration else None
step_footnote += step_duration
step_footnote = f"""<span style="color: #bbbbc2; font-size: 12px;">{step_footnote}</span> """
yield gr.ChatMessage(role="assistant", content=f"{step_footnote}")
yield gr.ChatMessage(role="assistant", content="-----")
def stream_to_gradio(
agent,
task: str,
reset_agent_memory: bool = False,
additional_args: Optional[dict] = None,
):
"""Runs an agent with the given task and streams the messages from the agent as gradio ChatMessages."""
if not _is_package_available("gradio"):
raise ModuleNotFoundError(
"Please install 'gradio' extra to use the GradioUI: `pip install 'smolagents[gradio]'`"
)
import gradio as gr
total_input_tokens = 0
total_output_tokens = 0
for step_log in agent.run(task, stream=True, reset=reset_agent_memory, additional_args=additional_args):
# Track tokens if model provides them
if hasattr(agent.model, "last_input_token_count"):
total_input_tokens += agent.model.last_input_token_count
total_output_tokens += agent.model.last_output_token_count
if isinstance(step_log, ActionStep):
step_log.input_token_count = agent.model.last_input_token_count
step_log.output_token_count = agent.model.last_output_token_count
for message in pull_messages_from_step(
step_log,
):
yield message
final_answer = step_log # Last log is the run's final_answer
final_answer = handle_agent_output_types(final_answer)
# --- (Bildanzeige-Logik bleibt wie im vorherigen Schritt) ---
if isinstance(final_answer, AgentText):
yield gr.ChatMessage(
role="assistant",
content=f"**Final answer:**\n{final_answer.to_string()}\n",
)
elif isinstance(final_answer, AgentImage):
# Versuche, das Bild anzuzeigen
try:
# Annahme: final_answer.image enthält ein PIL Image Objekt
if Image is not None and hasattr(final_answer, 'image') and isinstance(final_answer.image, Image.Image):
# Erstelle eine temporäre Datei zum Speichern des Bildes
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as tmpfile:
final_answer.image.save(tmpfile.name, format="PNG")
temp_file_path = tmpfile.name
print(f"Bild temporär gespeichert unter: {temp_file_path}") # Debugging-Ausgabe
# Übergib den Pfad direkt als content
yield gr.ChatMessage(
role="assistant",
content=temp_file_path, # Pass the path directly
)
else:
# Fallback, wenn .image nicht das erwartete PIL-Objekt ist oder Pillow fehlt
print("WARNUNG: Konnte Bild nicht als PIL-Objekt interpretieren. Zeige Text-Repräsentation.")
yield gr.ChatMessage(role="assistant", content=f"**Final answer (Image Object):** {str(final_answer)}")
except Exception as e:
print(f"FEHLER beim Verarbeiten/Anzeigen des Bildes: {e}")
# Fallback zur Textanzeige bei Fehlern
yield gr.ChatMessage(role="assistant", content=f"**Final answer (Error displaying Image):** {str(final_answer)}")
elif isinstance(final_answer, AgentAudio):
# Übergib den Pfad direkt als content (konsistent)
try:
# Annahme: final_answer.to_string() gibt den Pfad zurück
audio_path = final_answer.to_string()
if os.path.exists(audio_path): # Prüfen, ob der Pfad existiert
yield gr.ChatMessage(
role="assistant",
content=audio_path,
)
else:
print(f"WARNUNG: Audio-Pfad '{audio_path}' nicht gefunden. Zeige Text-Repräsentation.")
yield gr.ChatMessage(role="assistant", content=f"**Final answer (Audio Object):** {str(final_answer)}")
except Exception as e:
print(f"FEHLER beim Verarbeiten/Anzeigen von Audio: {e}")
yield gr.ChatMessage(role="assistant", content=f"**Final answer (Error displaying Audio):** {str(final_answer)}")
else:
# Fallback für andere Typen
yield gr.ChatMessage(role="assistant", content=f"**Final answer:** {str(final_answer)}")
class GradioUI:
"""A one-line interface to launch your agent in Gradio"""
def __init__(self, agent: MultiStepAgent, file_upload_folder: str | None = None):
if not _is_package_available("gradio"):
raise ModuleNotFoundError(
"Please install 'gradio' extra to use the GradioUI: `pip install 'smolagents[gradio]'`"
)
self.agent = agent
self.file_upload_folder = file_upload_folder
if self.file_upload_folder is not None:
# Erstelle Ordner, wenn er nicht existiert
os.makedirs(self.file_upload_folder, exist_ok=True)
def interact_with_agent(self, prompt, messages):
import gradio as gr
messages.append(gr.ChatMessage(role="user", content=prompt))
yield messages # Yield die Liste von ChatMessage Objekten
# Verwende einen temporären Ordner für generierte Bilder, falls keiner angegeben ist
temp_image_dir = os.path.join(tempfile.gettempdir(), "gradio_agent_images")
os.makedirs(temp_image_dir, exist_ok=True)
# Iteriere durch die Nachrichten vom Agenten
for msg in stream_to_gradio(self.agent, task=prompt, reset_agent_memory=False):
messages.append(msg)
yield messages # Yield die Liste von ChatMessage Objekten
yield messages # Yield die Liste von ChatMessage Objekten am Ende
# --- (Rest der Klasse GradioUI bleibt unverändert bis launch) ---
def upload_file(
self,
file,
file_uploads_log,
allowed_file_types=[
"application/pdf",
"application/vnd.openxmlformats-officedocument.wordprocessingml.document",
"text/plain",
],
):
"""
Handle file uploads, default allowed types are .pdf, .docx, and .txt
"""
import gradio as gr
if file is None:
return gr.Textbox("No file uploaded", visible=True), file_uploads_log
try:
mime_type, _ = mimetypes.guess_type(file.name)
except Exception as e:
return gr.Textbox(f"Error: {e}", visible=True), file_uploads_log
if mime_type not in allowed_file_types:
return gr.Textbox("File type disallowed", visible=True), file_uploads_log
# Sanitize file name
original_name = os.path.basename(file.name)
sanitized_name = re.sub(
r"[^\w\-.]", "_", original_name
) # Replace any non-alphanumeric, non-dash, or non-dot characters with underscores
type_to_ext = {}
for ext, t in mimetypes.types_map.items():
if t not in type_to_ext:
type_to_ext[t] = ext
# Ensure the extension correlates to the mime type
sanitized_name = sanitized_name.split(".")[:-1]
sanitized_name.append("" + type_to_ext[mime_type])
sanitized_name = "".join(sanitized_name)
# Ensure the upload folder exists
if self.file_upload_folder:
os.makedirs(self.file_upload_folder, exist_ok=True)
# Save the uploaded file to the specified folder
file_path = os.path.join(self.file_upload_folder, os.path.basename(sanitized_name))
shutil.copy(file.name, file_path)
return gr.Textbox(f"File uploaded: {file_path}", visible=True), file_uploads_log + [file_path]
else:
# Handle case where no upload folder is specified (optional)
return gr.Textbox("File upload folder not configured.", visible=True), file_uploads_log
def log_user_message(self, text_input, file_uploads_log):
return (
text_input
+ (
f"\nYou have been provided with these files, which might be helpful or not: {file_uploads_log}"
if len(file_uploads_log) > 0
else ""
),
"",
)
def launch(self, **kwargs):
import gradio as gr
with gr.Blocks(fill_height=True) as demo:
stored_messages = gr.State([])
file_uploads_log = gr.State([])
# --- *** HIER IST DIE ÄNDERUNG *** ---
# Füge type="messages" zur Chatbot-Initialisierung hinzu
chatbot = gr.Chatbot(
label="Agent",
type="messages", # Explizit das neue Format verwenden
elem_id="chatbot",
bubble_full_width=False,
avatar_images=(
None,
"[https://huggingface.co/datasets/huggingface/brand-assets/resolve/main/hf-logo-round-with-padding.png](https://huggingface.co/datasets/huggingface/brand-assets/resolve/main/hf-logo-round-with-padding.png)"
),
render=False
)
# --- *** ENDE DER ÄNDERUNG *** ---
# If an upload folder is provided, enable the upload feature
if self.file_upload_folder is not None:
with gr.Row():
upload_file = gr.File(label="Upload a file", scale=1)
upload_status = gr.Textbox(label="Upload Status", interactive=False, visible=False, scale=2)
upload_file.change(
self.upload_file,
[upload_file, file_uploads_log],
[upload_status, file_uploads_log],
)
with gr.Row():
text_input = gr.Textbox(
lines=1,
label="Chat Message",
placeholder="Type your message here...",
scale=4
)
# submit_button = gr.Button("Send", scale=1)
chatbot.render()
submit_action = text_input.submit(
self.log_user_message,
[text_input, file_uploads_log],
[stored_messages, text_input],
).then(
self.interact_with_agent,
[stored_messages, chatbot],
[chatbot]
)
# submit_button.click(
# self.log_user_message,
# [text_input, file_uploads_log],
# [stored_messages, text_input],
# ).then(
# self.interact_with_agent,
# [stored_messages, chatbot],
# [chatbot]
# )
demo.launch(debug=True, share=False, inline=False, **kwargs)
__all__ = ["stream_to_gradio", "GradioUI"]