MalekCode03 commited on
Commit
ac30449
·
verified ·
1 Parent(s): 523daa9

Upload 19 files

Browse files
.gitattributes CHANGED
@@ -33,3 +33,7 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ Images/DT.png filter=lfs diff=lfs merge=lfs -text
37
+ Images/Liner_Regresion.png filter=lfs diff=lfs merge=lfs -text
38
+ Images/LSTM.png filter=lfs diff=lfs merge=lfs -text
39
+ Images/Random_Forest.png filter=lfs diff=lfs merge=lfs -text
DashBoard.ipynb ADDED
@@ -0,0 +1 @@
 
 
1
+ {"nbformat":4,"nbformat_minor":0,"metadata":{"colab":{"provenance":[],"mount_file_id":"101_T8xMCWHcohzgIs8NvdK3wYK7h7lwO","authorship_tag":"ABX9TyPqWv0VJNnuZXYPzsYolcuK"},"kernelspec":{"name":"python3","display_name":"Python 3"},"language_info":{"name":"python"}},"cells":[{"cell_type":"code","source":["!pip install gradio"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"oL1tjvMuzso2","executionInfo":{"status":"ok","timestamp":1745179514537,"user_tz":-180,"elapsed":11973,"user":{"displayName":"مالك المصنف","userId":"01645315346138749579"}},"outputId":"69f9431f-742c-42ce-e0de-a81909f4d23b"},"execution_count":null,"outputs":[{"output_type":"stream","name":"stdout","text":["Collecting gradio\n"," Downloading gradio-5.25.2-py3-none-any.whl.metadata (16 kB)\n","Collecting aiofiles<25.0,>=22.0 (from gradio)\n"," Downloading aiofiles-24.1.0-py3-none-any.whl.metadata (10 kB)\n","Requirement already satisfied: anyio<5.0,>=3.0 in /usr/local/lib/python3.11/dist-packages (from gradio) (4.9.0)\n","Collecting fastapi<1.0,>=0.115.2 (from gradio)\n"," Downloading fastapi-0.115.12-py3-none-any.whl.metadata (27 kB)\n","Collecting ffmpy (from gradio)\n"," Downloading ffmpy-0.5.0-py3-none-any.whl.metadata (3.0 kB)\n","Collecting gradio-client==1.8.0 (from gradio)\n"," Downloading gradio_client-1.8.0-py3-none-any.whl.metadata (7.1 kB)\n","Collecting groovy~=0.1 (from gradio)\n"," Downloading groovy-0.1.2-py3-none-any.whl.metadata (6.1 kB)\n","Requirement already satisfied: httpx>=0.24.1 in /usr/local/lib/python3.11/dist-packages (from gradio) (0.28.1)\n","Requirement already satisfied: huggingface-hub>=0.28.1 in /usr/local/lib/python3.11/dist-packages (from gradio) (0.30.2)\n","Requirement already satisfied: jinja2<4.0 in /usr/local/lib/python3.11/dist-packages (from gradio) (3.1.6)\n","Requirement already satisfied: markupsafe<4.0,>=2.0 in /usr/local/lib/python3.11/dist-packages (from gradio) (3.0.2)\n","Requirement already satisfied: numpy<3.0,>=1.0 in /usr/local/lib/python3.11/dist-packages (from gradio) (2.0.2)\n","Requirement already satisfied: orjson~=3.0 in /usr/local/lib/python3.11/dist-packages (from gradio) (3.10.16)\n","Requirement already satisfied: packaging in /usr/local/lib/python3.11/dist-packages (from gradio) (24.2)\n","Requirement already satisfied: pandas<3.0,>=1.0 in /usr/local/lib/python3.11/dist-packages (from gradio) (2.2.2)\n","Requirement already satisfied: pillow<12.0,>=8.0 in /usr/local/lib/python3.11/dist-packages (from gradio) (11.1.0)\n","Requirement already satisfied: pydantic<2.12,>=2.0 in /usr/local/lib/python3.11/dist-packages (from gradio) (2.11.3)\n","Collecting pydub (from gradio)\n"," Downloading pydub-0.25.1-py2.py3-none-any.whl.metadata (1.4 kB)\n","Collecting python-multipart>=0.0.18 (from gradio)\n"," Downloading python_multipart-0.0.20-py3-none-any.whl.metadata (1.8 kB)\n","Requirement already satisfied: pyyaml<7.0,>=5.0 in /usr/local/lib/python3.11/dist-packages (from gradio) (6.0.2)\n","Collecting ruff>=0.9.3 (from gradio)\n"," Downloading ruff-0.11.6-py3-none-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (25 kB)\n","Collecting safehttpx<0.2.0,>=0.1.6 (from gradio)\n"," Downloading safehttpx-0.1.6-py3-none-any.whl.metadata (4.2 kB)\n","Collecting semantic-version~=2.0 (from gradio)\n"," Downloading semantic_version-2.10.0-py2.py3-none-any.whl.metadata (9.7 kB)\n","Collecting starlette<1.0,>=0.40.0 (from gradio)\n"," Downloading starlette-0.46.2-py3-none-any.whl.metadata (6.2 kB)\n","Collecting tomlkit<0.14.0,>=0.12.0 (from gradio)\n"," Downloading tomlkit-0.13.2-py3-none-any.whl.metadata (2.7 kB)\n","Requirement already satisfied: typer<1.0,>=0.12 in /usr/local/lib/python3.11/dist-packages (from gradio) (0.15.2)\n","Requirement already satisfied: typing-extensions~=4.0 in /usr/local/lib/python3.11/dist-packages (from gradio) (4.13.2)\n","Collecting uvicorn>=0.14.0 (from gradio)\n"," Downloading uvicorn-0.34.2-py3-none-any.whl.metadata (6.5 kB)\n","Requirement already satisfied: fsspec in /usr/local/lib/python3.11/dist-packages (from gradio-client==1.8.0->gradio) (2025.3.2)\n","Requirement already satisfied: websockets<16.0,>=10.0 in /usr/local/lib/python3.11/dist-packages (from gradio-client==1.8.0->gradio) (15.0.1)\n","Requirement already satisfied: idna>=2.8 in /usr/local/lib/python3.11/dist-packages (from anyio<5.0,>=3.0->gradio) (3.10)\n","Requirement already satisfied: sniffio>=1.1 in /usr/local/lib/python3.11/dist-packages (from anyio<5.0,>=3.0->gradio) (1.3.1)\n","Requirement already satisfied: certifi in /usr/local/lib/python3.11/dist-packages (from httpx>=0.24.1->gradio) (2025.1.31)\n","Requirement already satisfied: httpcore==1.* in /usr/local/lib/python3.11/dist-packages (from httpx>=0.24.1->gradio) (1.0.8)\n","Requirement already satisfied: h11<0.15,>=0.13 in /usr/local/lib/python3.11/dist-packages (from httpcore==1.*->httpx>=0.24.1->gradio) (0.14.0)\n","Requirement already satisfied: filelock in /usr/local/lib/python3.11/dist-packages (from huggingface-hub>=0.28.1->gradio) (3.18.0)\n","Requirement already satisfied: requests in /usr/local/lib/python3.11/dist-packages (from huggingface-hub>=0.28.1->gradio) (2.32.3)\n","Requirement already satisfied: tqdm>=4.42.1 in /usr/local/lib/python3.11/dist-packages (from huggingface-hub>=0.28.1->gradio) (4.67.1)\n","Requirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/python3.11/dist-packages (from pandas<3.0,>=1.0->gradio) (2.8.2)\n","Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.11/dist-packages (from pandas<3.0,>=1.0->gradio) (2025.2)\n","Requirement already satisfied: tzdata>=2022.7 in /usr/local/lib/python3.11/dist-packages (from pandas<3.0,>=1.0->gradio) (2025.2)\n","Requirement already satisfied: annotated-types>=0.6.0 in /usr/local/lib/python3.11/dist-packages (from pydantic<2.12,>=2.0->gradio) (0.7.0)\n","Requirement already satisfied: pydantic-core==2.33.1 in /usr/local/lib/python3.11/dist-packages (from pydantic<2.12,>=2.0->gradio) (2.33.1)\n","Requirement already satisfied: typing-inspection>=0.4.0 in /usr/local/lib/python3.11/dist-packages (from pydantic<2.12,>=2.0->gradio) (0.4.0)\n","Requirement already satisfied: click>=8.0.0 in /usr/local/lib/python3.11/dist-packages (from typer<1.0,>=0.12->gradio) (8.1.8)\n","Requirement already satisfied: shellingham>=1.3.0 in /usr/local/lib/python3.11/dist-packages (from typer<1.0,>=0.12->gradio) (1.5.4)\n","Requirement already satisfied: rich>=10.11.0 in /usr/local/lib/python3.11/dist-packages (from typer<1.0,>=0.12->gradio) (13.9.4)\n","Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.11/dist-packages (from python-dateutil>=2.8.2->pandas<3.0,>=1.0->gradio) (1.17.0)\n","Requirement already satisfied: markdown-it-py>=2.2.0 in /usr/local/lib/python3.11/dist-packages (from rich>=10.11.0->typer<1.0,>=0.12->gradio) (3.0.0)\n","Requirement already satisfied: pygments<3.0.0,>=2.13.0 in /usr/local/lib/python3.11/dist-packages (from rich>=10.11.0->typer<1.0,>=0.12->gradio) (2.18.0)\n","Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.11/dist-packages (from requests->huggingface-hub>=0.28.1->gradio) (3.4.1)\n","Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.11/dist-packages (from requests->huggingface-hub>=0.28.1->gradio) (2.3.0)\n","Requirement already satisfied: mdurl~=0.1 in /usr/local/lib/python3.11/dist-packages (from markdown-it-py>=2.2.0->rich>=10.11.0->typer<1.0,>=0.12->gradio) (0.1.2)\n","Downloading gradio-5.25.2-py3-none-any.whl (46.9 MB)\n","\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m46.9/46.9 MB\u001b[0m \u001b[31m23.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n","\u001b[?25hDownloading gradio_client-1.8.0-py3-none-any.whl (322 kB)\n","\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m322.2/322.2 kB\u001b[0m \u001b[31m23.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n","\u001b[?25hDownloading aiofiles-24.1.0-py3-none-any.whl (15 kB)\n","Downloading fastapi-0.115.12-py3-none-any.whl (95 kB)\n","\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m95.2/95.2 kB\u001b[0m \u001b[31m7.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n","\u001b[?25hDownloading groovy-0.1.2-py3-none-any.whl (14 kB)\n","Downloading python_multipart-0.0.20-py3-none-any.whl (24 kB)\n","Downloading ruff-0.11.6-py3-none-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (11.5 MB)\n","\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m11.5/11.5 MB\u001b[0m \u001b[31m88.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n","\u001b[?25hDownloading safehttpx-0.1.6-py3-none-any.whl (8.7 kB)\n","Downloading semantic_version-2.10.0-py2.py3-none-any.whl (15 kB)\n","Downloading starlette-0.46.2-py3-none-any.whl (72 kB)\n","\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m72.0/72.0 kB\u001b[0m \u001b[31m5.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n","\u001b[?25hDownloading tomlkit-0.13.2-py3-none-any.whl (37 kB)\n","Downloading uvicorn-0.34.2-py3-none-any.whl (62 kB)\n","\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m62.5/62.5 kB\u001b[0m \u001b[31m3.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n","\u001b[?25hDownloading ffmpy-0.5.0-py3-none-any.whl (6.0 kB)\n","Downloading pydub-0.25.1-py2.py3-none-any.whl (32 kB)\n","Installing collected packages: pydub, uvicorn, tomlkit, semantic-version, ruff, python-multipart, groovy, ffmpy, aiofiles, starlette, safehttpx, gradio-client, fastapi, gradio\n","Successfully installed aiofiles-24.1.0 fastapi-0.115.12 ffmpy-0.5.0 gradio-5.25.2 gradio-client-1.8.0 groovy-0.1.2 pydub-0.25.1 python-multipart-0.0.20 ruff-0.11.6 safehttpx-0.1.6 semantic-version-2.10.0 starlette-0.46.2 tomlkit-0.13.2 uvicorn-0.34.2\n"]}]},{"cell_type":"code","source":["\n","import gradio as gr\n","import pandas as pd\n","import pickle\n","import numpy as np\n","from tensorflow.keras.models import load_model\n","\n","# Load models and scalers\n","with open(\"/content/drive/MyDrive/Analaysis for Time Fauiler/Models/Feature_Scaler.pkl\", \"rb\") as f:\n"," scaler = pickle.load(f)\n","with open(\"/content/drive/MyDrive/Analaysis for Time Fauiler/Models/target_scaler.pkl\", \"rb\") as f:\n"," target_scaler = pickle.load(f)\n","with open(\"/content/drive/MyDrive/Analaysis for Time Fauiler/Models/LR_model.pkl\", \"rb\") as f:\n"," linear_model = pickle.load(f)\n","with open(\"/content/drive/MyDrive/Analaysis for Time Fauiler/Models/DT_model.pkl\", \"rb\") as f:\n"," dt_model = pickle.load(f)\n","with open(\"/content/drive/MyDrive/Analaysis for Time Fauiler/Models/RF_model.pkl\", \"rb\") as f:\n"," rf_model = pickle.load(f)\n","lstm_model = load_model(\"/content/drive/MyDrive/Analaysis for Time Fauiler/Models/best_model.h5\")\n","\n","# Create sequences for LSTM\n","def create_sequences(data, window_size=11):\n"," sequences = []\n"," for i in range(len(data) - window_size + 1):\n"," seq = data[i:i+window_size]\n"," sequences.append(seq)\n"," return np.array(sequences).astype('float32')\n","\n","# Data processing and alert function\n","def process_and_alert(file):\n"," try:\n"," df = pd.read_csv(file.name)\n"," df[\"timestamp\"] = pd.to_datetime(df[\"timestamp\"])\n"," df = df.sort_values(\"timestamp\").reset_index(drop=True)\n"," df[\"fault_flag\"] = df[\"status\"].apply(lambda x: 1 if x == \"fault\" else 0)\n"," fault_indices = df[df[\"fault_flag\"] == 1].index.tolist()\n"," time_to_failure = []\n"," for i in range(len(df)):\n"," next_faults = [j for j in fault_indices if j >= i]\n"," if next_faults:\n"," seconds = (df.loc[next_faults[0], \"timestamp\"] - df.loc[i, \"timestamp\"]).total_seconds()\n"," else:\n"," seconds = None\n"," time_to_failure.append(seconds)\n"," df[\"time_to_failure\"] = time_to_failure\n"," df.dropna(inplace=True)\n"," X = df.drop(columns=['time_to_failure', 'fault_flag', 'status', 'timestamp'])\n"," X_scaled = scaler.transform(X)\n","\n"," # LSTM processing\n"," window_size = 11\n"," if len(X_scaled) < window_size:\n"," raise ValueError(f\"Model requires at least {window_size} samples!\")\n"," X_seq = create_sequences(X_scaled, window_size)\n","\n"," # Predictions\n"," pred_linear = linear_model.predict(X_scaled)\n"," pred_dt = dt_model.predict(X_scaled)\n"," pred_rf = rf_model.predict(X_scaled)\n"," pred_lstm = lstm_model.predict(X_seq)\n","\n"," # Align lengths\n"," min_length = min(len(pred_linear), len(pred_dt), len(pred_rf), len(pred_lstm))\n"," pred_linear = pred_linear[:min_length]\n"," pred_dt = pred_dt[:min_length]\n"," pred_rf = pred_rf[:min_length]\n"," pred_lstm = pred_lstm[:min_length]\n","\n"," # Inverse transform\n"," pred_lstm = target_scaler.inverse_transform(pred_lstm.reshape(-1, 1))\n"," pred_linear = target_scaler.inverse_transform(pred_linear.reshape(-1, 1))\n"," pred_dt = target_scaler.inverse_transform(pred_dt.reshape(-1, 1))\n"," pred_rf = target_scaler.inverse_transform(pred_rf.reshape(-1, 1))\n","\n"," def format_value(val):\n"," return f'<span style=\"color:red;font-weight:bold;\">{val:.2f} (Fault)</span>' if val < 0 else f'{val:.2f}'\n","\n"," html_rows = \"\"\n"," for i in range(min_length):\n"," html_rows += \"<tr>\" + \"\".join([\n"," f\"<td>{format_value(pred_linear[i][0])}-second</td>\",\n"," f\"<td>{format_value(pred_dt[i][0])}-second</td>\",\n"," f\"<td>{format_value(pred_rf[i][0])}-second</td>\",\n"," f\"<td>{format_value(pred_lstm[i][0])}-second</td>\"\n"," ]) + \"</tr>\"\n","\n"," html_table = f\"\"\"\n"," <table border=\"1\" style=\"border-collapse:collapse; width:100%; text-align:center;\">\n"," <thead>\n"," <tr style=\"background-color:#f0f0f0;\">\n"," <th>Linear Regression</th>\n"," <th>Decision Tree</th>\n"," <th>Random Forest</th>\n"," <th>LSTM</th>\n"," </tr>\n"," </thead>\n"," <tbody>\n"," {html_rows}\n"," </tbody>\n"," </table>\n"," \"\"\"\n","\n"," # Alert System\n"," preds = {\n"," \"Linear Regression\": pred_linear,\n"," \"Decision Tree\": pred_dt,\n"," \"Random Forest\": pred_rf,\n"," \"LSTM\": pred_lstm\n"," }\n"," alerts = []\n"," for model_name, values in preds.items():\n"," positives = values[values > 0]\n"," if positives.size > 0:\n"," min_pos = np.min(positives)\n"," alerts.append((model_name, min_pos))\n"," if not alerts:\n"," alert_msg = \"<h3 style='color:red;'>❌ No positive predictions found! Failure may have already occurred.</h3>\"\n"," else:\n"," alerts.sort(key=lambda x: x[1])\n"," best_model, time_left = alerts[0]\n"," minutes = int(time_left // 60)\n"," seconds = int(time_left % 60)\n"," color = \"red\" if time_left < 60 else \"orange\" if time_left < 180 else \"green\"\n"," msg = f\"{minutes} minute(s) and {seconds} second(s)\" if minutes > 0 else f\"{seconds} second(s)\"\n"," alert_msg = f\"\"\"\n"," <div style=\"padding:20px; border:2px solid {color}; border-radius:10px;\">\n"," <h3>🔔 Failure Alert</h3>\n"," <p><strong>Model:</strong> <span style=\"color:blue;\">{best_model}</span></p>\n"," <p><strong>Estimated time to failure:</strong> <span style=\"color:{color}; font-weight:bold;\">{msg}</span></p>\n"," {\"<p style='color:red; font-weight:bold;'>⚠️ Imminent failure!</p>\" if time_left < 60 else \"\"}\n"," </div>\n"," \"\"\"\n"," return html_table, alert_msg\n"," except Exception as e:\n"," error_msg = f\"<div style='color:red; padding:20px; border:2px solid red;'><h3>❌ Error:</h3><p>{str(e)}</p></div>\"\n"," return error_msg, \"\"\n","\n","# Load comparison tables\n","def load_metrics():\n"," return pd.read_csv(\"/content/drive/MyDrive/Analaysis for Time Fauiler/Models_Metrices.csv\")\n","\n","def load_comparison():\n"," return pd.read_csv(\"/content/drive/MyDrive/Analaysis for Time Fauiler/model_comparison_20250419_0955.csv\")\n","\n","# Gradio UI\n","with gr.Blocks(title=\"📊 Model Comparison Dashboard\") as interface:\n"," with gr.Tab(\"📈 Model Comparison\"):\n"," gr.Markdown(\"## 🔍 Actual vs Predicted\")\n"," with gr.Row():\n"," gr.Image(value=\"/content/drive/MyDrive/Analaysis for Time Fauiler/Images/Liner_Regresion.png\", label=\"Linear Regression\")\n"," gr.Image(value=\"/content/drive/MyDrive/Analaysis for Time Fauiler/Images/DT.png\", label=\"Decision Tree\")\n"," with gr.Row():\n"," gr.Image(value=\"/content/drive/MyDrive/Analaysis for Time Fauiler/Images/Random_Forest.png\", label=\"Random Forest\")\n"," gr.Image(value=\"/content/drive/MyDrive/Analaysis for Time Fauiler/Images/LSTM.png\", label=\"LSTM\")\n"," gr.Markdown(\"### 🧮 Data Distribution\")\n"," gr.Image(value=\"/content/drive/MyDrive/Analaysis for Time Fauiler/Images/Data_Dis.png\", label=\"Data Distribution\")\n"," gr.Markdown(\"### 📋 Model Metrics Table\")\n"," gr.Dataframe(load_metrics, interactive=False)\n"," gr.Markdown(\"### 🆕 Best and Worst Models Table\")\n"," gr.Dataframe(load_comparison, interactive=False)\n","\n"," with gr.Tab(\"📁 Upload Data\"):\n"," gr.Markdown(\"## 📥 Upload a new CSV file to analyze and detect failure\")\n"," file_input = gr.File(label=\"Choose CSV File\")\n"," output_html = gr.HTML(label=\"Prediction Results\")\n"," alert_output = gr.HTML(label=\"🔔 Alert\")\n"," file_input.change(fn=process_and_alert, inputs=file_input, outputs=[output_html, alert_output])\n","\n"," with gr.Tab(\"🧮 Manual Input\"):\n"," gr.Markdown(\"\"\"\n"," <div style=\"display:flex; align-items:center; gap:10px;\">\n"," <span style=\"font-size:30px;\">🧾</span>\n"," <h3 style=\"margin:0;\">Enter 3 features to get a prediction and failure alert</h3>\n"," </div>\n"," \"\"\")\n"," with gr.Row():\n"," f1 = gr.Number(label=\"vibration\")\n"," f2 = gr.Number(label=\"temperature\")\n"," f3 = gr.Number(label=\"pressure\")\n"," result_output = gr.Textbox(label=\"🔍 Predicted Time (seconds)\", interactive=False)\n"," alert_output_ready = gr.HTML(label=\"🚨 Alert\")\n","\n"," def predict_and_alert_ready(x1, x2, x3):\n"," try:\n"," X_input = np.array([[x1, x2, x3]])\n"," X_scaled = scaler.transform(X_input)\n"," pred = rf_model.predict(X_scaled).reshape(-1, 1)\n"," pred_original = target_scaler.inverse_transform(pred)[0][0]\n"," minutes = int(pred_original // 60)\n"," seconds = int(pred_original % 60)\n"," color = \"red\" if pred_original < 60 else \"orange\" if pred_original < 180 else \"green\"\n"," msg = f\"{minutes} minute(s) and {seconds} second(s)\" if minutes > 0 else f\"{seconds} second(s)\"\n"," alert_html = f\"\"\"\n"," <div style=\"padding:15px; border:2px solid {color}; border-radius:10px;\">\n"," <h3>📢 Advanced Alert</h3>\n"," <p><strong>Estimated time to failure:</strong> <span style=\"color:{color}; font-weight:bold;\">{msg}</span></p>\n"," {\"<p style='color:red; font-weight:bold;'>⚠️ Imminent failure!</p>\" if pred_original < 60 else \"\"}\n"," </div>\n"," \"\"\"\n"," return f\"{pred_original:.2f} seconds\", alert_html\n"," except Exception as e:\n"," return \"Input Error\", f\"<p style='color:red;'>❌ {str(e)}</p>\"\n","\n"," btn = gr.Button(\"🔍 Predict Now\")\n"," btn.click(predict_and_alert_ready, inputs=[f1, f2, f3], outputs=[result_output, alert_output_ready])\n","\n","interface.launch(share=True)"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":628},"id":"MKfTdIejfZIG","executionInfo":{"status":"ok","timestamp":1745180746931,"user_tz":-180,"elapsed":2519,"user":{"displayName":"مالك المصنف","userId":"01645315346138749579"}},"outputId":"d9d2d2e3-7ec3-4fba-e2e3-4d78d3fafafa"},"execution_count":7,"outputs":[{"output_type":"stream","name":"stderr","text":["WARNING:absl:Compiled the loaded model, but the compiled metrics have yet to be built. `model.compile_metrics` will be empty until you train or evaluate the model.\n"]},{"output_type":"stream","name":"stdout","text":["Colab notebook detected. To show errors in colab notebook, set debug=True in launch()\n","* Running on public URL: https://0d8f523b48e5ed5d1f.gradio.live\n","\n","This share link expires in 1 week. For free permanent hosting and GPU upgrades, run `gradio deploy` from the terminal in the working directory to deploy to Hugging Face Spaces (https://huggingface.co/spaces)\n"]},{"output_type":"display_data","data":{"text/plain":["<IPython.core.display.HTML object>"],"text/html":["<div><iframe src=\"https://0d8f523b48e5ed5d1f.gradio.live\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"]},"metadata":{}},{"output_type":"execute_result","data":{"text/plain":[]},"metadata":{},"execution_count":7}]}]}
Data/Models_Metrices.csv ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ ,Model,MAE,RMSE,R²
2
+ 0,Linear Regression,0.5982439510843085,0.7946165156709485,0.17155066451323697
3
+ 1,Decision Tree,0.6012830132868977,0.8204766899608554,0.1167507580913204
4
+ 2,Random Forest,0.5828436463410006,0.8034027199386108,0.15312877905550182
5
+ 3,LSTM,2431.832872099035,3165.383614086637,-0.06490749197841938
Data/model_comparison_20250419_0955.csv ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ Model,Best Prediction,Error in Best Prediction,Worst Prediction,Error in Worst Prediction,Time of Best Prediction,Time of Worst Prediction
2
+ Random Forest,-0.00,0.00,3267.32,10532.68,2025-04-01 8:50:00,2025-04-01 21:20:00
3
+ LSTM,3042.28,42.28,3184.45,10615.55,2025-04-01 22:20:00,2025-04-01 19:10:00
4
+ Linear Regression,6.43,6.43,3525.86,10274.14,2025-04-01 19:40:00,2025-04-01 21:20:00
5
+ Decision Tree Regressor,-0.00,0.00,2344.19,11455.81,2025-04-01 8:50:00,2025-04-01 21:20:00
Images/DT.png ADDED

Git LFS Details

  • SHA256: e0af9ba96576e6b1d86b13f5a00c37061d1975ef5260cc60b0a31c700ff324f6
  • Pointer size: 131 Bytes
  • Size of remote file: 116 kB
Images/Data_Dis.png ADDED
Images/LSTM.png ADDED

Git LFS Details

  • SHA256: 6264172dedb7e7d2fac98ba39051834d763f1348c858835f4597c3bb51610dec
  • Pointer size: 131 Bytes
  • Size of remote file: 106 kB
Images/Liner_Regresion.png ADDED

Git LFS Details

  • SHA256: 2ce97aa529fd21f6415fcbd61564dc026d8cd2babb1aa08fe749fd94c6b14d57
  • Pointer size: 131 Bytes
  • Size of remote file: 115 kB
Images/Random_Forest.png ADDED

Git LFS Details

  • SHA256: 061ee434ceb74e503df963577e3f1b44bb45a8c09ca444148e3231ae512c1667
  • Pointer size: 131 Bytes
  • Size of remote file: 124 kB
Models/DT_model.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:de06789cb3b31c7c50ba4155a4172e1266a2faeedbc07bab9fb1cce48aaca87a
3
+ size 3429
Models/Feature_Scaler.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f241225b5176541fae29b53151db22bb488ec9babb6ed5b6334204d8742919c3
3
+ size 646
Models/LR_model.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f5807fa23f76c4f7ce4b5a34e7fa58f01f1d1cd5275b43915e0e41faf21f0dfa
3
+ size 452
Models/RF_model.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e6a4ece78f8544a38a7167ee3970ede28067731e34cdfa19fc164673d74ccb1f
3
+ size 757336
Models/best_model.h5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cba0ec727f1947f21c49b2c49fd76cdedab1549842adc599cec1b98d9893d43b
3
+ size 267816
Models/target_scaler.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5601fcc29222aa35f0b3980bacd32dcbac4368ad7399fdbf7b72710925a95ea1
3
+ size 474
Time_of_fauiler_models.ipynb ADDED
The diff for this file is too large to render. See raw diff
 
app.py ADDED
@@ -0,0 +1,221 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+ """DashBoard.ipynb
3
+
4
+ Automatically generated by Colab.
5
+
6
+ Original file is located at
7
+ https://colab.research.google.com/drive/101_T8xMCWHcohzgIs8NvdK3wYK7h7lwO
8
+ """
9
+
10
+
11
+ import gradio as gr
12
+ import pandas as pd
13
+ import pickle
14
+ import numpy as np
15
+ from tensorflow.keras.models import load_model
16
+
17
+ # تحميل النماذج من المجلد المحلي
18
+ with open("Models/Feature_Scaler.pkl", "rb") as f:
19
+ scaler = pickle.load(f)
20
+
21
+ with open("Models/target_scaler.pkl", "rb") as f:
22
+ target_scaler = pickle.load(f)
23
+
24
+ with open("Models/LR_model.pkl", "rb") as f:
25
+ linear_model = pickle.load(f)
26
+
27
+ with open("Models/DT_model.pkl", "rb") as f:
28
+ dt_model = pickle.load(f)
29
+
30
+ with open("Models/RF_model.pkl", "rb") as f:
31
+ rf_model = pickle.load(f)
32
+
33
+ lstm_model = load_model("Models/best_model.h5")
34
+
35
+ # Create sequences for LSTM
36
+ def create_sequences(data, window_size=11):
37
+ sequences = []
38
+ for i in range(len(data) - window_size + 1):
39
+ seq = data[i:i+window_size]
40
+ sequences.append(seq)
41
+ return np.array(sequences).astype('float32')
42
+
43
+ # Data processing and alert function
44
+ def process_and_alert(file):
45
+ try:
46
+ df = pd.read_csv(file.name)
47
+ df["timestamp"] = pd.to_datetime(df["timestamp"])
48
+ df = df.sort_values("timestamp").reset_index(drop=True)
49
+ df["fault_flag"] = df["status"].apply(lambda x: 1 if x == "fault" else 0)
50
+ fault_indices = df[df["fault_flag"] == 1].index.tolist()
51
+ time_to_failure = []
52
+ for i in range(len(df)):
53
+ next_faults = [j for j in fault_indices if j >= i]
54
+ if next_faults:
55
+ seconds = (df.loc[next_faults[0], "timestamp"] - df.loc[i, "timestamp"]).total_seconds()
56
+ else:
57
+ seconds = None
58
+ time_to_failure.append(seconds)
59
+ df["time_to_failure"] = time_to_failure
60
+ df.dropna(inplace=True)
61
+ X = df.drop(columns=['time_to_failure', 'fault_flag', 'status', 'timestamp'])
62
+ X_scaled = scaler.transform(X)
63
+
64
+ # LSTM processing
65
+ window_size = 11
66
+ if len(X_scaled) < window_size:
67
+ raise ValueError(f"Model requires at least {window_size} samples!")
68
+ X_seq = create_sequences(X_scaled, window_size)
69
+
70
+ # Predictions
71
+ pred_linear = linear_model.predict(X_scaled)
72
+ pred_dt = dt_model.predict(X_scaled)
73
+ pred_rf = rf_model.predict(X_scaled)
74
+ pred_lstm = lstm_model.predict(X_seq)
75
+
76
+ # Align lengths
77
+ min_length = min(len(pred_linear), len(pred_dt), len(pred_rf), len(pred_lstm))
78
+ pred_linear = pred_linear[:min_length]
79
+ pred_dt = pred_dt[:min_length]
80
+ pred_rf = pred_rf[:min_length]
81
+ pred_lstm = pred_lstm[:min_length]
82
+
83
+ # Inverse transform
84
+ pred_lstm = target_scaler.inverse_transform(pred_lstm.reshape(-1, 1))
85
+ pred_linear = target_scaler.inverse_transform(pred_linear.reshape(-1, 1))
86
+ pred_dt = target_scaler.inverse_transform(pred_dt.reshape(-1, 1))
87
+ pred_rf = target_scaler.inverse_transform(pred_rf.reshape(-1, 1))
88
+
89
+ def format_value(val):
90
+ return f'<span style="color:red;font-weight:bold;">{val:.2f} (Fault)</span>' if val < 0 else f'{val:.2f}'
91
+
92
+ html_rows = ""
93
+ for i in range(min_length):
94
+ html_rows += "<tr>" + "".join([
95
+ f"<td>{format_value(pred_linear[i][0])}-second</td>",
96
+ f"<td>{format_value(pred_dt[i][0])}-second</td>",
97
+ f"<td>{format_value(pred_rf[i][0])}-second</td>",
98
+ f"<td>{format_value(pred_lstm[i][0])}-second</td>"
99
+ ]) + "</tr>"
100
+
101
+ html_table = f"""
102
+ <table border="1" style="border-collapse:collapse; width:100%; text-align:center;">
103
+ <thead>
104
+ <tr style="background-color:#f0f0f0;">
105
+ <th>Linear Regression</th>
106
+ <th>Decision Tree</th>
107
+ <th>Random Forest</th>
108
+ <th>LSTM</th>
109
+ </tr>
110
+ </thead>
111
+ <tbody>
112
+ {html_rows}
113
+ </tbody>
114
+ </table>
115
+ """
116
+
117
+ # Alert System
118
+ preds = {
119
+ "Linear Regression": pred_linear,
120
+ "Decision Tree": pred_dt,
121
+ "Random Forest": pred_rf,
122
+ "LSTM": pred_lstm
123
+ }
124
+ alerts = []
125
+ for model_name, values in preds.items():
126
+ positives = values[values > 0]
127
+ if positives.size > 0:
128
+ min_pos = np.min(positives)
129
+ alerts.append((model_name, min_pos))
130
+ if not alerts:
131
+ alert_msg = "<h3 style='color:red;'>❌ No positive predictions found! Failure may have already occurred.</h3>"
132
+ else:
133
+ alerts.sort(key=lambda x: x[1])
134
+ best_model, time_left = alerts[0]
135
+ minutes = int(time_left // 60)
136
+ seconds = int(time_left % 60)
137
+ color = "red" if time_left < 60 else "orange" if time_left < 180 else "green"
138
+ msg = f"{minutes} minute(s) and {seconds} second(s)" if minutes > 0 else f"{seconds} second(s)"
139
+ alert_msg = f"""
140
+ <div style="padding:20px; border:2px solid {color}; border-radius:10px;">
141
+ <h3>🔔 Failure Alert</h3>
142
+ <p><strong>Model:</strong> <span style="color:blue;">{best_model}</span></p>
143
+ <p><strong>Estimated time to failure:</strong> <span style="color:{color}; font-weight:bold;">{msg}</span></p>
144
+ {"<p style='color:red; font-weight:bold;'>⚠️ Imminent failure!</p>" if time_left < 60 else ""}
145
+ </div>
146
+ """
147
+ return html_table, alert_msg
148
+ except Exception as e:
149
+ error_msg = f"<div style='color:red; padding:20px; border:2px solid red;'><h3>❌ Error:</h3><p>{str(e)}</p></div>"
150
+ return error_msg, ""
151
+
152
+ # Load comparison tables
153
+ def load_metrics():
154
+ return pd.read_csv("/content/drive/MyDrive/Analaysis for Time Fauiler/Models_Metrices.csv")
155
+
156
+ def load_comparison():
157
+ return pd.read_csv("/content/drive/MyDrive/Analaysis for Time Fauiler/model_comparison_20250419_0955.csv")
158
+
159
+ # Gradio UI
160
+ with gr.Blocks(title="📊 Model Comparison Dashboard") as interface:
161
+ with gr.Tab("📈 Model Comparison"):
162
+ gr.Markdown("## 🔍 Actual vs Predicted")
163
+ with gr.Row():
164
+ gr.Image(value="/content/drive/MyDrive/Analaysis for Time Fauiler/Images/Liner_Regresion.png", label="Linear Regression")
165
+ gr.Image(value="/content/drive/MyDrive/Analaysis for Time Fauiler/Images/DT.png", label="Decision Tree")
166
+ with gr.Row():
167
+ gr.Image(value="/content/drive/MyDrive/Analaysis for Time Fauiler/Images/Random_Forest.png", label="Random Forest")
168
+ gr.Image(value="/content/drive/MyDrive/Analaysis for Time Fauiler/Images/LSTM.png", label="LSTM")
169
+ gr.Markdown("### 🧮 Data Distribution")
170
+ gr.Image(value="/content/drive/MyDrive/Analaysis for Time Fauiler/Images/Data_Dis.png", label="Data Distribution")
171
+ gr.Markdown("### 📋 Model Metrics Table")
172
+ gr.Dataframe(load_metrics, interactive=False)
173
+ gr.Markdown("### 🆕 Best and Worst Models Table")
174
+ gr.Dataframe(load_comparison, interactive=False)
175
+
176
+ with gr.Tab("📁 Upload Data"):
177
+ gr.Markdown("## 📥 Upload a new CSV file to analyze and detect failure")
178
+ file_input = gr.File(label="Choose CSV File")
179
+ output_html = gr.HTML(label="Prediction Results")
180
+ alert_output = gr.HTML(label="🔔 Alert")
181
+ file_input.change(fn=process_and_alert, inputs=file_input, outputs=[output_html, alert_output])
182
+
183
+ with gr.Tab("🧮 Manual Input"):
184
+ gr.Markdown("""
185
+ <div style="display:flex; align-items:center; gap:10px;">
186
+ <span style="font-size:30px;">🧾</span>
187
+ <h3 style="margin:0;">Enter 3 features to get a prediction and failure alert</h3>
188
+ </div>
189
+ """)
190
+ with gr.Row():
191
+ f1 = gr.Number(label="vibration")
192
+ f2 = gr.Number(label="temperature")
193
+ f3 = gr.Number(label="pressure")
194
+ result_output = gr.Textbox(label="🔍 Predicted Time (seconds)", interactive=False)
195
+ alert_output_ready = gr.HTML(label="🚨 Alert")
196
+
197
+ def predict_and_alert_ready(x1, x2, x3):
198
+ try:
199
+ X_input = np.array([[x1, x2, x3]])
200
+ X_scaled = scaler.transform(X_input)
201
+ pred = rf_model.predict(X_scaled).reshape(-1, 1)
202
+ pred_original = target_scaler.inverse_transform(pred)[0][0]
203
+ minutes = int(pred_original // 60)
204
+ seconds = int(pred_original % 60)
205
+ color = "red" if pred_original < 60 else "orange" if pred_original < 180 else "green"
206
+ msg = f"{minutes} minute(s) and {seconds} second(s)" if minutes > 0 else f"{seconds} second(s)"
207
+ alert_html = f"""
208
+ <div style="padding:15px; border:2px solid {color}; border-radius:10px;">
209
+ <h3>📢 Advanced Alert</h3>
210
+ <p><strong>Estimated time to failure:</strong> <span style="color:{color}; font-weight:bold;">{msg}</span></p>
211
+ {"<p style='color:red; font-weight:bold;'>⚠️ Imminent failure!</p>" if pred_original < 60 else ""}
212
+ </div>
213
+ """
214
+ return f"{pred_original:.2f} seconds", alert_html
215
+ except Exception as e:
216
+ return "Input Error", f"<p style='color:red;'>❌ {str(e)}</p>"
217
+
218
+ btn = gr.Button("🔍 Predict Now")
219
+ btn.click(predict_and_alert_ready, inputs=[f1, f2, f3], outputs=[result_output, alert_output_ready])
220
+
221
+ interface.launch(share=True)
cnc_sensor_data.csv ADDED
@@ -0,0 +1,1001 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ timestamp,vibration,temperature,pressure,status
2
+ 2025-04-01 08:00:00,0.23,67.0,3.29,normal
3
+ 2025-04-01 08:10:00,0.27,60.5,3.0,normal
4
+ 2025-04-01 08:20:00,0.29,60.8,3.13,normal
5
+ 2025-04-01 08:30:00,0.47,66.0,3.14,normal
6
+ 2025-04-01 08:40:00,0.98,82.8,4.99,fault
7
+ 2025-04-01 08:50:00,0.23,69.9,3.41,normal
8
+ 2025-04-01 09:00:00,0.32,67.0,3.1,normal
9
+ 2025-04-01 09:10:00,0.34,67.8,3.48,normal
10
+ 2025-04-01 09:20:00,0.38,67.6,2.97,normal
11
+ 2025-04-01 09:30:00,0.46,61.1,3.4,normal
12
+ 2025-04-01 09:40:00,0.33,66.4,3.33,normal
13
+ 2025-04-01 09:50:00,0.45,61.4,3.32,normal
14
+ 2025-04-01 10:00:00,0.95,80.2,4.67,fault
15
+ 2025-04-01 10:10:00,0.37,61.9,3.34,normal
16
+ 2025-04-01 10:20:00,0.3,60.6,3.05,normal
17
+ 2025-04-01 10:30:00,0.4,69.8,2.99,normal
18
+ 2025-04-01 10:40:00,0.93,77.2,4.79,fault
19
+ 2025-04-01 10:50:00,0.62,78.4,4.5,fault
20
+ 2025-04-01 11:00:00,0.69,82.1,4.91,fault
21
+ 2025-04-01 11:10:00,0.33,64.0,3.43,normal
22
+ 2025-04-01 11:20:00,0.35,67.8,3.42,normal
23
+ 2025-04-01 11:30:00,0.33,61.2,2.86,normal
24
+ 2025-04-01 11:40:00,0.45,67.5,2.81,normal
25
+ 2025-04-01 11:50:00,0.72,80.7,4.88,fault
26
+ 2025-04-01 12:00:00,0.8,81.4,4.97,fault
27
+ 2025-04-01 12:10:00,0.68,79.9,4.06,fault
28
+ 2025-04-01 12:20:00,0.32,64.5,3.13,normal
29
+ 2025-04-01 12:30:00,0.33,62.7,2.92,normal
30
+ 2025-04-01 12:40:00,0.45,68.1,3.36,normal
31
+ 2025-04-01 12:50:00,0.32,61.6,3.39,normal
32
+ 2025-04-01 13:00:00,0.93,78.3,4.36,fault
33
+ 2025-04-01 13:10:00,0.38,64.8,3.18,normal
34
+ 2025-04-01 13:20:00,0.38,65.5,3.01,normal
35
+ 2025-04-01 13:30:00,0.8,82.1,4.08,fault
36
+ 2025-04-01 13:40:00,0.3,64.9,3.31,normal
37
+ 2025-04-01 13:50:00,0.35,68.3,3.45,normal
38
+ 2025-04-01 14:00:00,0.25,64.6,3.1,normal
39
+ 2025-04-01 14:10:00,0.21,69.6,3.43,normal
40
+ 2025-04-01 14:20:00,0.77,84.8,4.59,fault
41
+ 2025-04-01 14:30:00,0.44,67.7,2.87,normal
42
+ 2025-04-01 14:40:00,0.49,64.6,2.87,normal
43
+ 2025-04-01 14:50:00,0.83,80.0,4.05,fault
44
+ 2025-04-01 15:00:00,0.49,67.8,2.82,normal
45
+ 2025-04-01 15:10:00,0.46,66.3,3.15,normal
46
+ 2025-04-01 15:20:00,0.89,80.6,4.71,fault
47
+ 2025-04-01 15:30:00,0.39,67.6,3.4,normal
48
+ 2025-04-01 15:40:00,0.99,80.2,4.23,fault
49
+ 2025-04-01 15:50:00,0.49,61.3,3.47,normal
50
+ 2025-04-01 16:00:00,0.88,75.1,4.25,fault
51
+ 2025-04-01 16:10:00,0.31,69.7,3.49,normal
52
+ 2025-04-01 16:20:00,0.47,61.0,2.98,normal
53
+ 2025-04-01 16:30:00,0.93,82.1,4.37,fault
54
+ 2025-04-01 16:40:00,0.29,69.0,3.23,normal
55
+ 2025-04-01 16:50:00,0.36,60.0,3.23,normal
56
+ 2025-04-01 17:00:00,0.49,68.5,3.0,normal
57
+ 2025-04-01 17:10:00,0.41,68.6,3.31,normal
58
+ 2025-04-01 17:20:00,0.21,65.1,3.12,normal
59
+ 2025-04-01 17:30:00,0.22,64.4,2.91,normal
60
+ 2025-04-01 17:40:00,0.38,60.5,3.03,normal
61
+ 2025-04-01 17:50:00,0.37,61.3,3.36,normal
62
+ 2025-04-01 18:00:00,0.86,81.6,4.64,fault
63
+ 2025-04-01 18:10:00,0.93,76.5,4.12,fault
64
+ 2025-04-01 18:20:00,0.96,78.1,4.95,fault
65
+ 2025-04-01 18:30:00,0.21,63.0,2.92,normal
66
+ 2025-04-01 18:40:00,0.47,65.8,3.06,normal
67
+ 2025-04-01 18:50:00,0.49,67.0,3.0,normal
68
+ 2025-04-01 19:00:00,0.43,64.7,3.09,normal
69
+ 2025-04-01 19:10:00,0.43,60.7,3.38,normal
70
+ 2025-04-01 19:20:00,0.44,62.9,3.35,normal
71
+ 2025-04-01 19:30:00,0.27,67.3,3.27,normal
72
+ 2025-04-01 19:40:00,0.24,64.3,2.89,normal
73
+ 2025-04-01 19:50:00,0.36,69.1,3.03,normal
74
+ 2025-04-01 20:00:00,0.36,64.4,2.95,normal
75
+ 2025-04-01 20:10:00,0.21,60.5,3.14,normal
76
+ 2025-04-01 20:20:00,0.3,61.3,3.16,normal
77
+ 2025-04-01 20:30:00,0.86,82.3,4.78,fault
78
+ 2025-04-01 20:40:00,0.66,75.1,4.8,fault
79
+ 2025-04-01 20:50:00,0.7,76.4,4.01,fault
80
+ 2025-04-01 21:00:00,0.44,64.1,3.08,normal
81
+ 2025-04-01 21:10:00,0.21,64.7,3.39,normal
82
+ 2025-04-01 21:20:00,0.62,81.2,4.63,fault
83
+ 2025-04-01 21:30:00,0.3,64.0,3.16,normal
84
+ 2025-04-01 21:40:00,0.34,69.2,3.2,normal
85
+ 2025-04-01 21:50:00,0.22,63.3,3.32,normal
86
+ 2025-04-01 22:00:00,0.41,68.9,2.86,normal
87
+ 2025-04-01 22:10:00,0.97,79.8,4.53,fault
88
+ 2025-04-01 22:20:00,0.43,61.9,3.09,normal
89
+ 2025-04-01 22:30:00,0.4,63.0,3.29,normal
90
+ 2025-04-01 22:40:00,0.88,76.9,4.29,fault
91
+ 2025-04-01 22:50:00,0.42,66.8,2.91,normal
92
+ 2025-04-01 23:00:00,0.39,65.4,3.44,normal
93
+ 2025-04-01 23:10:00,0.38,68.4,3.38,normal
94
+ 2025-04-01 23:20:00,0.39,64.7,3.26,normal
95
+ 2025-04-01 23:30:00,0.36,67.1,3.12,normal
96
+ 2025-04-01 23:40:00,0.36,69.2,3.1,normal
97
+ 2025-04-01 23:50:00,0.31,65.1,2.93,normal
98
+ 2025-04-02 00:00:00,0.39,67.8,3.22,normal
99
+ 2025-04-02 00:10:00,0.41,63.2,2.87,normal
100
+ 2025-04-02 00:20:00,0.32,67.8,3.08,normal
101
+ 2025-04-02 00:30:00,0.21,67.1,3.4,normal
102
+ 2025-04-02 00:40:00,0.35,63.6,3.01,normal
103
+ 2025-04-02 00:50:00,0.72,79.1,4.27,fault
104
+ 2025-04-02 01:00:00,0.21,70.0,3.31,normal
105
+ 2025-04-02 01:10:00,0.21,67.1,3.26,normal
106
+ 2025-04-02 01:20:00,0.38,63.2,3.24,normal
107
+ 2025-04-02 01:30:00,0.69,82.1,4.35,fault
108
+ 2025-04-02 01:40:00,0.26,67.5,2.99,normal
109
+ 2025-04-02 01:50:00,0.33,60.7,3.05,normal
110
+ 2025-04-02 02:00:00,0.43,69.3,3.4,normal
111
+ 2025-04-02 02:10:00,0.24,61.3,2.84,normal
112
+ 2025-04-02 02:20:00,0.86,76.8,4.25,fault
113
+ 2025-04-02 02:30:00,0.24,61.4,3.49,normal
114
+ 2025-04-02 02:40:00,0.41,60.8,3.33,normal
115
+ 2025-04-02 02:50:00,0.24,62.6,3.0,normal
116
+ 2025-04-02 03:00:00,0.49,64.6,3.1,normal
117
+ 2025-04-02 03:10:00,0.21,68.4,2.91,normal
118
+ 2025-04-02 03:20:00,0.3,61.4,3.04,normal
119
+ 2025-04-02 03:30:00,0.45,61.0,3.12,normal
120
+ 2025-04-02 03:40:00,0.92,80.5,4.3,fault
121
+ 2025-04-02 03:50:00,0.38,62.3,3.2,normal
122
+ 2025-04-02 04:00:00,0.45,63.1,3.0,normal
123
+ 2025-04-02 04:10:00,0.44,69.0,3.42,normal
124
+ 2025-04-02 04:20:00,0.46,67.2,3.01,normal
125
+ 2025-04-02 04:30:00,0.64,83.9,4.64,fault
126
+ 2025-04-02 04:40:00,0.35,64.3,3.28,normal
127
+ 2025-04-02 04:50:00,0.34,65.2,3.03,normal
128
+ 2025-04-02 05:00:00,0.44,67.6,3.04,normal
129
+ 2025-04-02 05:10:00,0.24,61.2,3.31,normal
130
+ 2025-04-02 05:20:00,0.63,81.6,4.79,fault
131
+ 2025-04-02 05:30:00,0.39,64.3,3.25,normal
132
+ 2025-04-02 05:40:00,0.42,61.5,3.3,normal
133
+ 2025-04-02 05:50:00,0.21,62.9,3.44,normal
134
+ 2025-04-02 06:00:00,0.48,66.2,3.08,normal
135
+ 2025-04-02 06:10:00,0.21,67.0,3.44,normal
136
+ 2025-04-02 06:20:00,0.38,68.7,3.39,normal
137
+ 2025-04-02 06:30:00,0.48,68.7,3.1,normal
138
+ 2025-04-02 06:40:00,0.41,60.0,2.81,normal
139
+ 2025-04-02 06:50:00,0.45,64.7,2.96,normal
140
+ 2025-04-02 07:00:00,0.43,67.3,2.98,normal
141
+ 2025-04-02 07:10:00,0.4,68.6,3.33,normal
142
+ 2025-04-02 07:20:00,0.83,80.1,4.39,fault
143
+ 2025-04-02 07:30:00,0.4,66.9,3.23,normal
144
+ 2025-04-02 07:40:00,0.45,62.4,3.39,normal
145
+ 2025-04-02 07:50:00,0.35,68.3,3.08,normal
146
+ 2025-04-02 08:00:00,0.36,66.8,3.48,normal
147
+ 2025-04-02 08:10:00,0.36,66.8,2.97,normal
148
+ 2025-04-02 08:20:00,0.27,66.0,3.12,normal
149
+ 2025-04-02 08:30:00,0.46,62.3,2.88,normal
150
+ 2025-04-02 08:40:00,0.36,61.5,3.27,normal
151
+ 2025-04-02 08:50:00,0.46,64.2,2.88,normal
152
+ 2025-04-02 09:00:00,0.36,66.1,3.26,normal
153
+ 2025-04-02 09:10:00,0.43,61.8,2.91,normal
154
+ 2025-04-02 09:20:00,0.5,61.7,3.17,normal
155
+ 2025-04-02 09:30:00,0.4,60.3,2.97,normal
156
+ 2025-04-02 09:40:00,0.92,75.4,4.02,fault
157
+ 2025-04-02 09:50:00,0.35,68.4,3.48,normal
158
+ 2025-04-02 10:00:00,0.43,68.9,2.84,normal
159
+ 2025-04-02 10:10:00,0.5,68.2,3.43,normal
160
+ 2025-04-02 10:20:00,0.23,63.0,2.87,normal
161
+ 2025-04-02 10:30:00,0.99,81.8,4.34,fault
162
+ 2025-04-02 10:40:00,0.43,65.0,3.04,normal
163
+ 2025-04-02 10:50:00,0.3,61.8,3.01,normal
164
+ 2025-04-02 11:00:00,0.94,84.0,4.75,fault
165
+ 2025-04-02 11:10:00,0.28,62.8,3.31,normal
166
+ 2025-04-02 11:20:00,0.41,68.2,3.06,normal
167
+ 2025-04-02 11:30:00,0.92,82.0,4.38,fault
168
+ 2025-04-02 11:40:00,0.49,69.6,2.8,normal
169
+ 2025-04-02 11:50:00,0.24,66.5,2.93,normal
170
+ 2025-04-02 12:00:00,0.29,67.4,2.97,normal
171
+ 2025-04-02 12:10:00,0.81,82.2,4.49,fault
172
+ 2025-04-02 12:20:00,0.39,60.3,3.26,normal
173
+ 2025-04-02 12:30:00,0.36,68.0,2.82,normal
174
+ 2025-04-02 12:40:00,0.2,64.2,3.04,normal
175
+ 2025-04-02 12:50:00,1.0,76.7,4.13,fault
176
+ 2025-04-02 13:00:00,0.24,64.7,3.19,normal
177
+ 2025-04-02 13:10:00,0.32,64.4,2.85,normal
178
+ 2025-04-02 13:20:00,0.27,67.7,2.81,normal
179
+ 2025-04-02 13:30:00,0.42,64.5,3.02,normal
180
+ 2025-04-02 13:40:00,0.27,69.6,2.96,normal
181
+ 2025-04-02 13:50:00,0.8,84.6,4.2,fault
182
+ 2025-04-02 14:00:00,0.63,83.3,4.17,fault
183
+ 2025-04-02 14:10:00,0.45,66.5,3.14,normal
184
+ 2025-04-02 14:20:00,0.3,63.7,2.91,normal
185
+ 2025-04-02 14:30:00,0.42,61.5,3.14,normal
186
+ 2025-04-02 14:40:00,0.47,67.7,3.35,normal
187
+ 2025-04-02 14:50:00,0.2,67.4,3.07,normal
188
+ 2025-04-02 15:00:00,0.4,60.7,3.14,normal
189
+ 2025-04-02 15:10:00,0.4,60.9,2.87,normal
190
+ 2025-04-02 15:20:00,0.5,60.1,2.88,normal
191
+ 2025-04-02 15:30:00,0.27,68.8,3.28,normal
192
+ 2025-04-02 15:40:00,0.41,60.0,2.82,normal
193
+ 2025-04-02 15:50:00,0.44,63.5,2.84,normal
194
+ 2025-04-02 16:00:00,0.31,61.0,3.49,normal
195
+ 2025-04-02 16:10:00,0.36,62.9,2.87,normal
196
+ 2025-04-02 16:20:00,0.32,68.5,3.37,normal
197
+ 2025-04-02 16:30:00,0.81,77.6,4.95,fault
198
+ 2025-04-02 16:40:00,0.45,64.3,3.24,normal
199
+ 2025-04-02 16:50:00,0.34,69.7,3.16,normal
200
+ 2025-04-02 17:00:00,0.47,67.2,2.89,normal
201
+ 2025-04-02 17:10:00,0.4,66.2,3.01,normal
202
+ 2025-04-02 17:20:00,0.26,63.7,3.17,normal
203
+ 2025-04-02 17:30:00,0.45,63.6,2.99,normal
204
+ 2025-04-02 17:40:00,0.61,80.8,4.2,fault
205
+ 2025-04-02 17:50:00,0.2,66.7,2.86,normal
206
+ 2025-04-02 18:00:00,0.21,63.2,3.07,normal
207
+ 2025-04-02 18:10:00,0.28,67.1,2.82,normal
208
+ 2025-04-02 18:20:00,0.49,64.5,3.21,normal
209
+ 2025-04-02 18:30:00,0.37,60.8,3.06,normal
210
+ 2025-04-02 18:40:00,0.48,65.8,2.84,normal
211
+ 2025-04-02 18:50:00,0.41,62.4,3.26,normal
212
+ 2025-04-02 19:00:00,0.21,65.1,3.17,normal
213
+ 2025-04-02 19:10:00,0.29,65.6,3.14,normal
214
+ 2025-04-02 19:20:00,0.27,63.4,3.22,normal
215
+ 2025-04-02 19:30:00,0.33,67.1,3.17,normal
216
+ 2025-04-02 19:40:00,0.35,64.7,3.28,normal
217
+ 2025-04-02 19:50:00,0.34,67.2,3.04,normal
218
+ 2025-04-02 20:00:00,0.65,83.1,4.87,fault
219
+ 2025-04-02 20:10:00,0.93,78.5,4.24,fault
220
+ 2025-04-02 20:20:00,0.36,67.8,3.36,normal
221
+ 2025-04-02 20:30:00,0.24,61.1,2.93,normal
222
+ 2025-04-02 20:40:00,0.68,82.1,4.59,fault
223
+ 2025-04-02 20:50:00,0.36,66.2,2.9,normal
224
+ 2025-04-02 21:00:00,0.22,68.0,3.43,normal
225
+ 2025-04-02 21:10:00,0.25,64.2,3.39,normal
226
+ 2025-04-02 21:20:00,0.45,67.8,3.23,normal
227
+ 2025-04-02 21:30:00,0.88,83.0,4.97,fault
228
+ 2025-04-02 21:40:00,0.22,64.7,3.31,normal
229
+ 2025-04-02 21:50:00,0.93,83.0,4.85,fault
230
+ 2025-04-02 22:00:00,0.4,64.6,3.1,normal
231
+ 2025-04-02 22:10:00,0.68,75.8,4.29,fault
232
+ 2025-04-02 22:20:00,0.49,64.2,3.5,normal
233
+ 2025-04-02 22:30:00,0.64,80.2,4.62,fault
234
+ 2025-04-02 22:40:00,0.93,75.3,4.67,fault
235
+ 2025-04-02 22:50:00,0.46,64.3,3.0,normal
236
+ 2025-04-02 23:00:00,0.6,84.6,4.61,fault
237
+ 2025-04-02 23:10:00,0.49,69.1,3.15,normal
238
+ 2025-04-02 23:20:00,0.35,61.5,3.26,normal
239
+ 2025-04-02 23:30:00,0.34,60.4,3.07,normal
240
+ 2025-04-02 23:40:00,0.25,61.9,3.28,normal
241
+ 2025-04-02 23:50:00,0.43,62.0,3.38,normal
242
+ 2025-04-03 00:00:00,0.27,61.4,3.43,normal
243
+ 2025-04-03 00:10:00,0.41,69.4,3.13,normal
244
+ 2025-04-03 00:20:00,0.36,63.8,3.13,normal
245
+ 2025-04-03 00:30:00,0.31,60.9,2.95,normal
246
+ 2025-04-03 00:40:00,0.96,80.8,4.33,fault
247
+ 2025-04-03 00:50:00,0.98,82.1,4.49,fault
248
+ 2025-04-03 01:00:00,0.46,62.7,3.01,normal
249
+ 2025-04-03 01:10:00,0.99,81.7,4.85,fault
250
+ 2025-04-03 01:20:00,0.28,62.1,2.81,normal
251
+ 2025-04-03 01:30:00,0.7,81.5,4.06,fault
252
+ 2025-04-03 01:40:00,0.42,69.3,3.26,normal
253
+ 2025-04-03 01:50:00,0.46,67.6,3.46,normal
254
+ 2025-04-03 02:00:00,0.74,78.0,4.39,fault
255
+ 2025-04-03 02:10:00,0.94,84.9,4.08,fault
256
+ 2025-04-03 02:20:00,0.43,69.6,3.01,normal
257
+ 2025-04-03 02:30:00,0.42,61.7,3.38,normal
258
+ 2025-04-03 02:40:00,0.22,69.0,3.49,normal
259
+ 2025-04-03 02:50:00,0.66,78.3,4.12,fault
260
+ 2025-04-03 03:00:00,0.48,67.6,2.92,normal
261
+ 2025-04-03 03:10:00,0.35,61.1,3.21,normal
262
+ 2025-04-03 03:20:00,0.96,82.9,4.98,fault
263
+ 2025-04-03 03:30:00,0.43,64.1,3.28,normal
264
+ 2025-04-03 03:40:00,0.49,60.2,2.95,normal
265
+ 2025-04-03 03:50:00,0.86,81.6,4.03,fault
266
+ 2025-04-03 04:00:00,0.88,79.3,4.82,fault
267
+ 2025-04-03 04:10:00,0.64,81.7,4.2,fault
268
+ 2025-04-03 04:20:00,0.26,68.3,2.83,normal
269
+ 2025-04-03 04:30:00,0.26,64.8,3.25,normal
270
+ 2025-04-03 04:40:00,0.21,70.0,3.38,normal
271
+ 2025-04-03 04:50:00,0.98,81.6,4.63,fault
272
+ 2025-04-03 05:00:00,0.5,64.3,3.44,normal
273
+ 2025-04-03 05:10:00,0.46,63.1,2.85,normal
274
+ 2025-04-03 05:20:00,0.97,76.2,4.8,fault
275
+ 2025-04-03 05:30:00,0.37,69.3,3.16,normal
276
+ 2025-04-03 05:40:00,0.23,67.9,3.41,normal
277
+ 2025-04-03 05:50:00,0.85,80.1,4.81,fault
278
+ 2025-04-03 06:00:00,0.22,65.7,3.26,normal
279
+ 2025-04-03 06:10:00,0.23,65.1,3.26,normal
280
+ 2025-04-03 06:20:00,0.34,61.0,2.99,normal
281
+ 2025-04-03 06:30:00,0.85,75.1,4.21,fault
282
+ 2025-04-03 06:40:00,0.33,62.4,3.22,normal
283
+ 2025-04-03 06:50:00,0.23,60.5,3.04,normal
284
+ 2025-04-03 07:00:00,0.28,62.2,3.32,normal
285
+ 2025-04-03 07:10:00,0.31,65.1,2.97,normal
286
+ 2025-04-03 07:20:00,0.91,80.8,4.99,fault
287
+ 2025-04-03 07:30:00,0.48,66.5,3.39,normal
288
+ 2025-04-03 07:40:00,0.46,61.9,2.86,normal
289
+ 2025-04-03 07:50:00,0.23,61.6,3.22,normal
290
+ 2025-04-03 08:00:00,0.76,77.5,4.06,fault
291
+ 2025-04-03 08:10:00,0.35,65.0,3.12,normal
292
+ 2025-04-03 08:20:00,0.31,63.7,2.97,normal
293
+ 2025-04-03 08:30:00,0.29,69.0,3.09,normal
294
+ 2025-04-03 08:40:00,0.33,65.2,3.38,normal
295
+ 2025-04-03 08:50:00,0.97,76.0,4.51,fault
296
+ 2025-04-03 09:00:00,0.66,82.9,4.48,fault
297
+ 2025-04-03 09:10:00,0.2,65.3,3.02,normal
298
+ 2025-04-03 09:20:00,0.42,65.7,3.32,normal
299
+ 2025-04-03 09:30:00,0.38,63.1,2.97,normal
300
+ 2025-04-03 09:40:00,0.64,84.5,4.75,fault
301
+ 2025-04-03 09:50:00,0.36,60.8,3.11,normal
302
+ 2025-04-03 10:00:00,0.62,79.4,4.45,fault
303
+ 2025-04-03 10:10:00,0.25,68.7,3.45,normal
304
+ 2025-04-03 10:20:00,0.25,68.3,3.31,normal
305
+ 2025-04-03 10:30:00,0.39,61.8,2.97,normal
306
+ 2025-04-03 10:40:00,0.46,61.2,2.8,normal
307
+ 2025-04-03 10:50:00,0.3,68.5,2.88,normal
308
+ 2025-04-03 11:00:00,0.23,64.2,3.1,normal
309
+ 2025-04-03 11:10:00,0.36,62.8,3.11,normal
310
+ 2025-04-03 11:20:00,0.39,62.7,3.04,normal
311
+ 2025-04-03 11:30:00,0.47,68.4,3.24,normal
312
+ 2025-04-03 11:40:00,0.22,61.6,3.16,normal
313
+ 2025-04-03 11:50:00,0.22,69.9,3.31,normal
314
+ 2025-04-03 12:00:00,0.29,69.9,3.49,normal
315
+ 2025-04-03 12:10:00,0.33,61.2,2.92,normal
316
+ 2025-04-03 12:20:00,0.47,64.7,3.44,normal
317
+ 2025-04-03 12:30:00,0.37,65.2,2.98,normal
318
+ 2025-04-03 12:40:00,0.29,67.7,3.03,normal
319
+ 2025-04-03 12:50:00,0.37,67.0,3.44,normal
320
+ 2025-04-03 13:00:00,0.4,67.9,2.84,normal
321
+ 2025-04-03 13:10:00,0.65,75.6,4.13,fault
322
+ 2025-04-03 13:20:00,0.22,68.7,3.34,normal
323
+ 2025-04-03 13:30:00,0.49,68.2,2.83,normal
324
+ 2025-04-03 13:40:00,0.8,76.0,4.62,fault
325
+ 2025-04-03 13:50:00,0.26,68.6,3.32,normal
326
+ 2025-04-03 14:00:00,0.39,61.4,3.29,normal
327
+ 2025-04-03 14:10:00,0.35,69.9,2.97,normal
328
+ 2025-04-03 14:20:00,0.3,68.5,3.31,normal
329
+ 2025-04-03 14:30:00,0.39,68.8,3.24,normal
330
+ 2025-04-03 14:40:00,0.32,60.9,3.29,normal
331
+ 2025-04-03 14:50:00,0.47,60.2,3.32,normal
332
+ 2025-04-03 15:00:00,0.35,60.1,3.44,normal
333
+ 2025-04-03 15:10:00,0.48,65.7,2.89,normal
334
+ 2025-04-03 15:20:00,0.43,63.7,3.43,normal
335
+ 2025-04-03 15:30:00,0.26,61.5,3.33,normal
336
+ 2025-04-03 15:40:00,0.67,79.1,4.25,fault
337
+ 2025-04-03 15:50:00,0.64,75.9,4.79,fault
338
+ 2025-04-03 16:00:00,0.3,64.1,2.99,normal
339
+ 2025-04-03 16:10:00,0.44,66.5,3.2,normal
340
+ 2025-04-03 16:20:00,0.39,67.8,3.2,normal
341
+ 2025-04-03 16:30:00,0.27,62.1,3.24,normal
342
+ 2025-04-03 16:40:00,0.38,65.9,3.38,normal
343
+ 2025-04-03 16:50:00,0.31,60.1,3.22,normal
344
+ 2025-04-03 17:00:00,0.46,65.8,3.09,normal
345
+ 2025-04-03 17:10:00,0.41,68.8,2.93,normal
346
+ 2025-04-03 17:20:00,0.33,66.9,3.25,normal
347
+ 2025-04-03 17:30:00,0.26,69.1,2.95,normal
348
+ 2025-04-03 17:40:00,0.87,80.2,4.14,fault
349
+ 2025-04-03 17:50:00,0.46,68.9,3.23,normal
350
+ 2025-04-03 18:00:00,0.4,61.6,2.8,normal
351
+ 2025-04-03 18:10:00,0.69,82.8,4.87,fault
352
+ 2025-04-03 18:20:00,0.49,65.1,2.95,normal
353
+ 2025-04-03 18:30:00,0.39,69.3,2.9,normal
354
+ 2025-04-03 18:40:00,0.44,60.2,2.91,normal
355
+ 2025-04-03 18:50:00,0.35,65.1,3.41,normal
356
+ 2025-04-03 19:00:00,0.7,78.8,4.02,fault
357
+ 2025-04-03 19:10:00,0.41,64.8,3.18,normal
358
+ 2025-04-03 19:20:00,0.5,61.2,3.26,normal
359
+ 2025-04-03 19:30:00,0.25,60.5,3.19,normal
360
+ 2025-04-03 19:40:00,0.41,61.2,3.19,normal
361
+ 2025-04-03 19:50:00,0.47,64.8,3.45,normal
362
+ 2025-04-03 20:00:00,0.4,69.2,2.89,normal
363
+ 2025-04-03 20:10:00,0.49,69.5,3.1,normal
364
+ 2025-04-03 20:20:00,0.31,68.4,2.86,normal
365
+ 2025-04-03 20:30:00,0.44,61.8,3.4,normal
366
+ 2025-04-03 20:40:00,0.39,67.3,3.22,normal
367
+ 2025-04-03 20:50:00,0.42,61.1,3.26,normal
368
+ 2025-04-03 21:00:00,0.29,63.8,3.35,normal
369
+ 2025-04-03 21:10:00,0.37,66.1,3.06,normal
370
+ 2025-04-03 21:20:00,0.39,65.4,2.88,normal
371
+ 2025-04-03 21:30:00,0.27,64.4,3.49,normal
372
+ 2025-04-03 21:40:00,0.24,67.7,3.06,normal
373
+ 2025-04-03 21:50:00,0.5,68.8,3.1,normal
374
+ 2025-04-03 22:00:00,0.45,68.5,3.46,normal
375
+ 2025-04-03 22:10:00,0.23,68.0,2.86,normal
376
+ 2025-04-03 22:20:00,0.26,63.1,3.01,normal
377
+ 2025-04-03 22:30:00,0.43,67.6,3.02,normal
378
+ 2025-04-03 22:40:00,0.29,67.7,2.92,normal
379
+ 2025-04-03 22:50:00,0.46,61.3,3.05,normal
380
+ 2025-04-03 23:00:00,0.83,82.3,4.56,fault
381
+ 2025-04-03 23:10:00,0.3,65.0,3.2,normal
382
+ 2025-04-03 23:20:00,0.36,66.8,3.33,normal
383
+ 2025-04-03 23:30:00,1.0,83.1,4.49,fault
384
+ 2025-04-03 23:40:00,0.48,66.9,3.35,normal
385
+ 2025-04-03 23:50:00,0.22,69.0,3.02,normal
386
+ 2025-04-04 00:00:00,0.37,67.7,3.48,normal
387
+ 2025-04-04 00:10:00,0.45,64.4,3.25,normal
388
+ 2025-04-04 00:20:00,0.36,64.6,3.22,normal
389
+ 2025-04-04 00:30:00,0.33,63.0,3.16,normal
390
+ 2025-04-04 00:40:00,0.97,77.3,4.34,fault
391
+ 2025-04-04 00:50:00,0.33,67.8,3.31,normal
392
+ 2025-04-04 01:00:00,0.48,62.8,3.39,normal
393
+ 2025-04-04 01:10:00,0.5,60.6,3.45,normal
394
+ 2025-04-04 01:20:00,0.78,84.4,4.91,fault
395
+ 2025-04-04 01:30:00,0.42,60.1,3.37,normal
396
+ 2025-04-04 01:40:00,0.35,60.8,3.36,normal
397
+ 2025-04-04 01:50:00,0.23,61.3,2.92,normal
398
+ 2025-04-04 02:00:00,0.79,75.6,4.25,fault
399
+ 2025-04-04 02:10:00,0.42,60.9,3.28,normal
400
+ 2025-04-04 02:20:00,0.39,65.6,3.47,normal
401
+ 2025-04-04 02:30:00,0.49,62.0,3.46,normal
402
+ 2025-04-04 02:40:00,0.47,63.2,3.03,normal
403
+ 2025-04-04 02:50:00,0.63,78.4,4.57,fault
404
+ 2025-04-04 03:00:00,0.9,80.2,4.88,fault
405
+ 2025-04-04 03:10:00,0.95,76.2,4.6,fault
406
+ 2025-04-04 03:20:00,0.48,67.9,3.04,normal
407
+ 2025-04-04 03:30:00,0.44,66.6,2.93,normal
408
+ 2025-04-04 03:40:00,0.93,76.7,4.06,fault
409
+ 2025-04-04 03:50:00,0.41,66.8,3.32,normal
410
+ 2025-04-04 04:00:00,0.35,66.3,3.2,normal
411
+ 2025-04-04 04:10:00,0.22,69.3,3.35,normal
412
+ 2025-04-04 04:20:00,0.5,63.7,3.36,normal
413
+ 2025-04-04 04:30:00,0.35,65.6,3.49,normal
414
+ 2025-04-04 04:40:00,0.44,65.4,2.98,normal
415
+ 2025-04-04 04:50:00,0.43,63.8,2.91,normal
416
+ 2025-04-04 05:00:00,0.33,62.7,3.04,normal
417
+ 2025-04-04 05:10:00,0.36,69.0,2.94,normal
418
+ 2025-04-04 05:20:00,0.39,60.6,2.89,normal
419
+ 2025-04-04 05:30:00,0.46,64.4,2.97,normal
420
+ 2025-04-04 05:40:00,0.93,80.5,4.39,fault
421
+ 2025-04-04 05:50:00,0.27,63.5,3.29,normal
422
+ 2025-04-04 06:00:00,0.46,68.9,2.91,normal
423
+ 2025-04-04 06:10:00,0.44,61.2,2.9,normal
424
+ 2025-04-04 06:20:00,0.38,67.6,3.3,normal
425
+ 2025-04-04 06:30:00,0.74,76.9,4.39,fault
426
+ 2025-04-04 06:40:00,0.42,60.1,3.36,normal
427
+ 2025-04-04 06:50:00,0.23,67.2,3.05,normal
428
+ 2025-04-04 07:00:00,0.24,69.3,3.05,normal
429
+ 2025-04-04 07:10:00,0.46,61.4,3.04,normal
430
+ 2025-04-04 07:20:00,0.22,67.4,3.36,normal
431
+ 2025-04-04 07:30:00,0.39,66.7,2.89,normal
432
+ 2025-04-04 07:40:00,0.33,67.2,3.17,normal
433
+ 2025-04-04 07:50:00,0.2,64.4,3.34,normal
434
+ 2025-04-04 08:00:00,0.27,62.0,3.34,normal
435
+ 2025-04-04 08:10:00,0.84,77.4,4.53,fault
436
+ 2025-04-04 08:20:00,0.28,60.7,3.18,normal
437
+ 2025-04-04 08:30:00,0.91,78.9,4.12,fault
438
+ 2025-04-04 08:40:00,0.46,68.6,2.9,normal
439
+ 2025-04-04 08:50:00,0.4,63.1,2.84,normal
440
+ 2025-04-04 09:00:00,0.4,68.0,3.37,normal
441
+ 2025-04-04 09:10:00,0.39,63.2,3.2,normal
442
+ 2025-04-04 09:20:00,0.34,66.5,3.37,normal
443
+ 2025-04-04 09:30:00,0.33,62.9,3.08,normal
444
+ 2025-04-04 09:40:00,0.39,63.4,3.14,normal
445
+ 2025-04-04 09:50:00,0.6,77.4,4.88,fault
446
+ 2025-04-04 10:00:00,0.42,62.5,3.33,normal
447
+ 2025-04-04 10:10:00,0.45,64.6,3.04,normal
448
+ 2025-04-04 10:20:00,0.2,62.0,3.02,normal
449
+ 2025-04-04 10:30:00,0.41,68.5,3.14,normal
450
+ 2025-04-04 10:40:00,0.8,81.1,4.72,fault
451
+ 2025-04-04 10:50:00,0.68,76.5,4.18,fault
452
+ 2025-04-04 11:00:00,0.25,61.2,3.1,normal
453
+ 2025-04-04 11:10:00,0.26,66.6,3.31,normal
454
+ 2025-04-04 11:20:00,0.38,69.3,3.09,normal
455
+ 2025-04-04 11:30:00,0.42,69.7,3.43,normal
456
+ 2025-04-04 11:40:00,0.25,62.1,2.81,normal
457
+ 2025-04-04 11:50:00,0.31,66.3,3.32,normal
458
+ 2025-04-04 12:00:00,0.47,66.6,3.11,normal
459
+ 2025-04-04 12:10:00,0.49,67.2,3.47,normal
460
+ 2025-04-04 12:20:00,0.45,65.5,3.12,normal
461
+ 2025-04-04 12:30:00,0.46,65.4,2.86,normal
462
+ 2025-04-04 12:40:00,0.4,63.0,2.97,normal
463
+ 2025-04-04 12:50:00,0.86,77.8,4.49,fault
464
+ 2025-04-04 13:00:00,0.36,64.8,3.28,normal
465
+ 2025-04-04 13:10:00,0.68,78.0,4.69,fault
466
+ 2025-04-04 13:20:00,0.31,62.3,3.39,normal
467
+ 2025-04-04 13:30:00,0.45,68.6,3.2,normal
468
+ 2025-04-04 13:40:00,0.47,63.5,3.36,normal
469
+ 2025-04-04 13:50:00,0.47,61.8,3.46,normal
470
+ 2025-04-04 14:00:00,0.46,68.3,3.25,normal
471
+ 2025-04-04 14:10:00,0.27,68.5,2.96,normal
472
+ 2025-04-04 14:20:00,0.31,67.4,3.13,normal
473
+ 2025-04-04 14:30:00,0.22,60.7,2.97,normal
474
+ 2025-04-04 14:40:00,0.42,65.9,2.86,normal
475
+ 2025-04-04 14:50:00,0.35,61.0,3.34,normal
476
+ 2025-04-04 15:00:00,0.28,65.5,3.29,normal
477
+ 2025-04-04 15:10:00,0.29,62.3,2.85,normal
478
+ 2025-04-04 15:20:00,0.3,69.3,3.25,normal
479
+ 2025-04-04 15:30:00,0.28,67.8,3.49,normal
480
+ 2025-04-04 15:40:00,0.83,84.3,4.44,fault
481
+ 2025-04-04 15:50:00,0.77,82.1,4.63,fault
482
+ 2025-04-04 16:00:00,0.28,61.1,3.44,normal
483
+ 2025-04-04 16:10:00,0.64,76.7,4.95,fault
484
+ 2025-04-04 16:20:00,0.4,62.3,2.96,normal
485
+ 2025-04-04 16:30:00,0.86,84.6,4.95,fault
486
+ 2025-04-04 16:40:00,0.3,66.7,3.43,normal
487
+ 2025-04-04 16:50:00,0.3,68.1,3.33,normal
488
+ 2025-04-04 17:00:00,0.39,61.3,3.45,normal
489
+ 2025-04-04 17:10:00,0.45,62.8,3.31,normal
490
+ 2025-04-04 17:20:00,0.3,65.9,3.42,normal
491
+ 2025-04-04 17:30:00,0.46,66.2,3.27,normal
492
+ 2025-04-04 17:40:00,0.2,62.6,3.34,normal
493
+ 2025-04-04 17:50:00,0.25,62.8,3.14,normal
494
+ 2025-04-04 18:00:00,0.25,60.8,3.44,normal
495
+ 2025-04-04 18:10:00,0.92,80.3,4.73,fault
496
+ 2025-04-04 18:20:00,0.23,63.6,3.39,normal
497
+ 2025-04-04 18:30:00,0.31,64.6,3.08,normal
498
+ 2025-04-04 18:40:00,0.45,67.1,3.45,normal
499
+ 2025-04-04 18:50:00,0.93,76.7,4.94,fault
500
+ 2025-04-04 19:00:00,0.99,83.7,4.35,fault
501
+ 2025-04-04 19:10:00,0.23,62.6,3.2,normal
502
+ 2025-04-04 19:20:00,0.61,75.4,4.15,fault
503
+ 2025-04-04 19:30:00,0.47,63.7,3.07,normal
504
+ 2025-04-04 19:40:00,0.46,65.6,3.43,normal
505
+ 2025-04-04 19:50:00,0.28,67.3,3.38,normal
506
+ 2025-04-04 20:00:00,0.45,67.4,2.98,normal
507
+ 2025-04-04 20:10:00,0.3,69.3,3.28,normal
508
+ 2025-04-04 20:20:00,0.84,81.7,4.96,fault
509
+ 2025-04-04 20:30:00,0.34,69.6,2.95,normal
510
+ 2025-04-04 20:40:00,0.44,60.6,2.88,normal
511
+ 2025-04-04 20:50:00,0.23,61.4,3.04,normal
512
+ 2025-04-04 21:00:00,0.37,68.4,3.06,normal
513
+ 2025-04-04 21:10:00,0.5,62.5,3.23,normal
514
+ 2025-04-04 21:20:00,0.36,61.5,3.41,normal
515
+ 2025-04-04 21:30:00,0.37,60.1,3.36,normal
516
+ 2025-04-04 21:40:00,0.37,64.4,2.84,normal
517
+ 2025-04-04 21:50:00,0.98,77.0,4.48,fault
518
+ 2025-04-04 22:00:00,0.35,65.6,3.19,normal
519
+ 2025-04-04 22:10:00,0.31,68.9,3.41,normal
520
+ 2025-04-04 22:20:00,0.3,67.3,3.1,normal
521
+ 2025-04-04 22:30:00,0.87,78.5,4.98,fault
522
+ 2025-04-04 22:40:00,0.41,65.7,3.37,normal
523
+ 2025-04-04 22:50:00,0.83,76.2,4.63,fault
524
+ 2025-04-04 23:00:00,0.42,62.7,3.1,normal
525
+ 2025-04-04 23:10:00,0.34,68.8,3.11,normal
526
+ 2025-04-04 23:20:00,0.95,83.5,4.56,fault
527
+ 2025-04-04 23:30:00,0.23,69.5,3.48,normal
528
+ 2025-04-04 23:40:00,0.43,62.4,3.09,normal
529
+ 2025-04-04 23:50:00,0.35,67.1,2.97,normal
530
+ 2025-04-05 00:00:00,0.39,69.0,3.14,normal
531
+ 2025-04-05 00:10:00,0.94,76.4,4.04,fault
532
+ 2025-04-05 00:20:00,0.26,66.7,3.11,normal
533
+ 2025-04-05 00:30:00,0.76,79.5,4.79,fault
534
+ 2025-04-05 00:40:00,0.81,77.0,4.36,fault
535
+ 2025-04-05 00:50:00,0.46,65.6,3.27,normal
536
+ 2025-04-05 01:00:00,0.35,66.1,3.24,normal
537
+ 2025-04-05 01:10:00,0.29,69.4,3.2,normal
538
+ 2025-04-05 01:20:00,0.33,65.1,3.3,normal
539
+ 2025-04-05 01:30:00,0.49,61.7,3.08,normal
540
+ 2025-04-05 01:40:00,0.7,76.4,4.05,fault
541
+ 2025-04-05 01:50:00,0.74,84.6,4.21,fault
542
+ 2025-04-05 02:00:00,0.36,66.6,3.45,normal
543
+ 2025-04-05 02:10:00,0.96,75.0,4.58,fault
544
+ 2025-04-05 02:20:00,0.45,61.7,3.5,normal
545
+ 2025-04-05 02:30:00,0.87,77.8,4.26,fault
546
+ 2025-04-05 02:40:00,0.27,66.5,3.02,normal
547
+ 2025-04-05 02:50:00,0.34,63.1,3.13,normal
548
+ 2025-04-05 03:00:00,0.39,63.2,2.99,normal
549
+ 2025-04-05 03:10:00,0.98,75.4,4.35,fault
550
+ 2025-04-05 03:20:00,0.33,64.4,2.83,normal
551
+ 2025-04-05 03:30:00,0.88,83.8,4.21,fault
552
+ 2025-04-05 03:40:00,0.39,62.7,3.41,normal
553
+ 2025-04-05 03:50:00,0.27,61.9,3.02,normal
554
+ 2025-04-05 04:00:00,0.35,62.3,3.47,normal
555
+ 2025-04-05 04:10:00,0.35,62.6,3.06,normal
556
+ 2025-04-05 04:20:00,0.24,65.2,3.07,normal
557
+ 2025-04-05 04:30:00,0.31,61.3,3.3,normal
558
+ 2025-04-05 04:40:00,0.48,60.3,3.0,normal
559
+ 2025-04-05 04:50:00,0.3,69.9,3.23,normal
560
+ 2025-04-05 05:00:00,0.41,65.0,2.84,normal
561
+ 2025-04-05 05:10:00,0.38,64.0,2.8,normal
562
+ 2025-04-05 05:20:00,0.27,65.9,3.03,normal
563
+ 2025-04-05 05:30:00,0.22,65.5,3.21,normal
564
+ 2025-04-05 05:40:00,0.97,83.1,4.93,fault
565
+ 2025-04-05 05:50:00,0.22,69.2,2.91,normal
566
+ 2025-04-05 06:00:00,0.23,62.0,3.03,normal
567
+ 2025-04-05 06:10:00,0.37,69.5,3.07,normal
568
+ 2025-04-05 06:20:00,0.33,61.0,2.93,normal
569
+ 2025-04-05 06:30:00,0.29,66.7,2.81,normal
570
+ 2025-04-05 06:40:00,0.47,60.5,3.44,normal
571
+ 2025-04-05 06:50:00,0.43,68.7,2.83,normal
572
+ 2025-04-05 07:00:00,0.74,75.4,4.71,fault
573
+ 2025-04-05 07:10:00,0.38,64.6,3.38,normal
574
+ 2025-04-05 07:20:00,0.9,77.7,4.84,fault
575
+ 2025-04-05 07:30:00,0.25,67.9,2.8,normal
576
+ 2025-04-05 07:40:00,0.23,65.6,3.31,normal
577
+ 2025-04-05 07:50:00,0.27,66.5,2.96,normal
578
+ 2025-04-05 08:00:00,0.45,62.4,3.04,normal
579
+ 2025-04-05 08:10:00,0.4,66.6,3.37,normal
580
+ 2025-04-05 08:20:00,0.21,60.5,2.91,normal
581
+ 2025-04-05 08:30:00,0.69,78.6,4.45,fault
582
+ 2025-04-05 08:40:00,0.87,77.8,4.29,fault
583
+ 2025-04-05 08:50:00,0.22,65.2,3.38,normal
584
+ 2025-04-05 09:00:00,0.44,61.9,3.25,normal
585
+ 2025-04-05 09:10:00,0.35,64.9,3.28,normal
586
+ 2025-04-05 09:20:00,0.39,68.9,3.04,normal
587
+ 2025-04-05 09:30:00,0.93,75.5,4.55,fault
588
+ 2025-04-05 09:40:00,0.65,84.5,4.69,fault
589
+ 2025-04-05 09:50:00,0.43,68.8,2.84,normal
590
+ 2025-04-05 10:00:00,0.2,65.2,3.18,normal
591
+ 2025-04-05 10:10:00,0.39,60.7,3.04,normal
592
+ 2025-04-05 10:20:00,0.31,60.9,3.17,normal
593
+ 2025-04-05 10:30:00,0.29,63.4,3.48,normal
594
+ 2025-04-05 10:40:00,0.4,63.8,3.11,normal
595
+ 2025-04-05 10:50:00,0.96,75.5,4.08,fault
596
+ 2025-04-05 11:00:00,0.27,68.1,2.88,normal
597
+ 2025-04-05 11:10:00,0.21,63.6,3.36,normal
598
+ 2025-04-05 11:20:00,0.31,64.6,3.22,normal
599
+ 2025-04-05 11:30:00,0.45,67.3,3.26,normal
600
+ 2025-04-05 11:40:00,0.45,62.3,3.48,normal
601
+ 2025-04-05 11:50:00,0.38,62.1,3.44,normal
602
+ 2025-04-05 12:00:00,0.41,66.3,2.99,normal
603
+ 2025-04-05 12:10:00,0.42,60.1,3.27,normal
604
+ 2025-04-05 12:20:00,0.48,66.1,3.35,normal
605
+ 2025-04-05 12:30:00,0.31,64.6,2.84,normal
606
+ 2025-04-05 12:40:00,0.36,64.8,3.31,normal
607
+ 2025-04-05 12:50:00,0.61,81.6,4.99,fault
608
+ 2025-04-05 13:00:00,0.66,75.0,4.86,fault
609
+ 2025-04-05 13:10:00,0.41,64.0,3.1,normal
610
+ 2025-04-05 13:20:00,0.31,68.3,3.33,normal
611
+ 2025-04-05 13:30:00,0.28,69.0,3.3,normal
612
+ 2025-04-05 13:40:00,0.39,65.1,2.86,normal
613
+ 2025-04-05 13:50:00,0.49,61.1,2.83,normal
614
+ 2025-04-05 14:00:00,0.4,68.3,3.12,normal
615
+ 2025-04-05 14:10:00,0.21,68.6,3.28,normal
616
+ 2025-04-05 14:20:00,0.36,64.0,3.26,normal
617
+ 2025-04-05 14:30:00,0.89,78.9,4.19,fault
618
+ 2025-04-05 14:40:00,0.32,69.9,2.83,normal
619
+ 2025-04-05 14:50:00,0.24,69.1,3.16,normal
620
+ 2025-04-05 15:00:00,0.89,77.4,4.46,fault
621
+ 2025-04-05 15:10:00,0.86,79.3,4.06,fault
622
+ 2025-04-05 15:20:00,0.21,64.2,3.0,normal
623
+ 2025-04-05 15:30:00,0.42,65.6,3.01,normal
624
+ 2025-04-05 15:40:00,0.32,66.6,2.99,normal
625
+ 2025-04-05 15:50:00,0.81,78.1,4.35,fault
626
+ 2025-04-05 16:00:00,0.74,80.9,4.78,fault
627
+ 2025-04-05 16:10:00,0.42,65.1,2.95,normal
628
+ 2025-04-05 16:20:00,0.64,81.6,4.5,fault
629
+ 2025-04-05 16:30:00,0.42,68.1,3.34,normal
630
+ 2025-04-05 16:40:00,0.26,65.1,2.97,normal
631
+ 2025-04-05 16:50:00,0.48,62.8,2.86,normal
632
+ 2025-04-05 17:00:00,0.41,60.9,3.09,normal
633
+ 2025-04-05 17:10:00,0.35,68.4,3.19,normal
634
+ 2025-04-05 17:20:00,0.48,62.3,2.94,normal
635
+ 2025-04-05 17:30:00,0.44,64.1,3.22,normal
636
+ 2025-04-05 17:40:00,0.3,61.7,2.94,normal
637
+ 2025-04-05 17:50:00,0.43,66.7,3.38,normal
638
+ 2025-04-05 18:00:00,0.31,66.9,3.13,normal
639
+ 2025-04-05 18:10:00,0.25,63.7,2.82,normal
640
+ 2025-04-05 18:20:00,0.97,79.6,4.76,fault
641
+ 2025-04-05 18:30:00,0.3,62.3,2.87,normal
642
+ 2025-04-05 18:40:00,0.97,83.2,4.73,fault
643
+ 2025-04-05 18:50:00,0.33,66.2,3.36,normal
644
+ 2025-04-05 19:00:00,0.45,63.5,2.83,normal
645
+ 2025-04-05 19:10:00,0.45,65.7,3.01,normal
646
+ 2025-04-05 19:20:00,0.75,78.6,4.54,fault
647
+ 2025-04-05 19:30:00,0.38,63.1,3.26,normal
648
+ 2025-04-05 19:40:00,0.23,61.0,3.14,normal
649
+ 2025-04-05 19:50:00,0.36,61.9,3.14,normal
650
+ 2025-04-05 20:00:00,0.38,64.7,3.38,normal
651
+ 2025-04-05 20:10:00,0.75,78.1,4.91,fault
652
+ 2025-04-05 20:20:00,0.4,66.7,3.05,normal
653
+ 2025-04-05 20:30:00,0.4,64.3,3.29,normal
654
+ 2025-04-05 20:40:00,0.35,60.1,3.07,normal
655
+ 2025-04-05 20:50:00,0.45,64.4,2.93,normal
656
+ 2025-04-05 21:00:00,0.79,79.3,4.7,fault
657
+ 2025-04-05 21:10:00,0.61,84.9,4.66,fault
658
+ 2025-04-05 21:20:00,0.43,60.9,3.43,normal
659
+ 2025-04-05 21:30:00,0.8,84.8,4.99,fault
660
+ 2025-04-05 21:40:00,0.29,68.9,3.26,normal
661
+ 2025-04-05 21:50:00,0.36,64.4,3.15,normal
662
+ 2025-04-05 22:00:00,0.66,84.9,4.53,fault
663
+ 2025-04-05 22:10:00,0.42,63.3,3.06,normal
664
+ 2025-04-05 22:20:00,0.5,64.5,2.92,normal
665
+ 2025-04-05 22:30:00,0.34,62.6,3.0,normal
666
+ 2025-04-05 22:40:00,0.45,67.9,2.82,normal
667
+ 2025-04-05 22:50:00,0.9,80.9,4.61,fault
668
+ 2025-04-05 23:00:00,0.28,66.5,3.05,normal
669
+ 2025-04-05 23:10:00,0.66,83.6,4.05,fault
670
+ 2025-04-05 23:20:00,0.76,75.5,4.51,fault
671
+ 2025-04-05 23:30:00,0.47,65.0,3.25,normal
672
+ 2025-04-05 23:40:00,0.44,66.4,3.37,normal
673
+ 2025-04-05 23:50:00,0.32,62.2,3.26,normal
674
+ 2025-04-06 00:00:00,0.2,62.2,3.12,normal
675
+ 2025-04-06 00:10:00,0.63,82.0,4.68,fault
676
+ 2025-04-06 00:20:00,0.42,68.8,2.85,normal
677
+ 2025-04-06 00:30:00,0.71,79.7,4.14,fault
678
+ 2025-04-06 00:40:00,0.95,76.2,4.47,fault
679
+ 2025-04-06 00:50:00,0.44,60.9,3.05,normal
680
+ 2025-04-06 01:00:00,0.61,82.5,4.03,fault
681
+ 2025-04-06 01:10:00,0.65,77.8,4.25,fault
682
+ 2025-04-06 01:20:00,0.35,65.0,2.91,normal
683
+ 2025-04-06 01:30:00,0.21,61.0,2.8,normal
684
+ 2025-04-06 01:40:00,0.22,64.5,3.02,normal
685
+ 2025-04-06 01:50:00,0.43,68.6,2.98,normal
686
+ 2025-04-06 02:00:00,0.27,61.7,2.91,normal
687
+ 2025-04-06 02:10:00,0.22,61.4,3.02,normal
688
+ 2025-04-06 02:20:00,0.69,80.1,4.99,fault
689
+ 2025-04-06 02:30:00,0.29,69.7,3.28,normal
690
+ 2025-04-06 02:40:00,0.3,66.4,3.3,normal
691
+ 2025-04-06 02:50:00,0.47,67.2,3.45,normal
692
+ 2025-04-06 03:00:00,0.97,78.5,4.44,fault
693
+ 2025-04-06 03:10:00,0.23,68.8,3.27,normal
694
+ 2025-04-06 03:20:00,0.37,63.9,3.18,normal
695
+ 2025-04-06 03:30:00,0.29,69.8,3.26,normal
696
+ 2025-04-06 03:40:00,0.49,68.5,3.35,normal
697
+ 2025-04-06 03:50:00,0.34,68.9,3.5,normal
698
+ 2025-04-06 04:00:00,0.4,69.6,3.03,normal
699
+ 2025-04-06 04:10:00,0.92,78.6,4.33,fault
700
+ 2025-04-06 04:20:00,0.44,63.0,2.95,normal
701
+ 2025-04-06 04:30:00,0.8,82.8,4.42,fault
702
+ 2025-04-06 04:40:00,0.46,64.1,3.48,normal
703
+ 2025-04-06 04:50:00,0.79,81.6,4.22,fault
704
+ 2025-04-06 05:00:00,0.91,76.7,4.73,fault
705
+ 2025-04-06 05:10:00,0.42,63.8,3.37,normal
706
+ 2025-04-06 05:20:00,0.37,61.7,3.43,normal
707
+ 2025-04-06 05:30:00,0.4,64.8,2.85,normal
708
+ 2025-04-06 05:40:00,0.4,64.5,2.95,normal
709
+ 2025-04-06 05:50:00,0.38,61.1,3.38,normal
710
+ 2025-04-06 06:00:00,0.26,68.0,2.89,normal
711
+ 2025-04-06 06:10:00,0.74,76.1,4.7,fault
712
+ 2025-04-06 06:20:00,0.81,84.3,4.41,fault
713
+ 2025-04-06 06:30:00,0.4,61.3,3.23,normal
714
+ 2025-04-06 06:40:00,0.23,69.8,3.33,normal
715
+ 2025-04-06 06:50:00,0.5,64.0,2.99,normal
716
+ 2025-04-06 07:00:00,0.4,61.6,3.16,normal
717
+ 2025-04-06 07:10:00,0.91,80.7,4.11,fault
718
+ 2025-04-06 07:20:00,0.42,66.4,2.85,normal
719
+ 2025-04-06 07:30:00,0.41,66.2,2.91,normal
720
+ 2025-04-06 07:40:00,0.3,63.5,3.19,normal
721
+ 2025-04-06 07:50:00,0.29,69.6,2.86,normal
722
+ 2025-04-06 08:00:00,0.47,61.1,2.98,normal
723
+ 2025-04-06 08:10:00,0.86,76.0,4.63,fault
724
+ 2025-04-06 08:20:00,0.37,69.4,3.06,normal
725
+ 2025-04-06 08:30:00,0.48,66.6,3.42,normal
726
+ 2025-04-06 08:40:00,0.72,84.5,4.77,fault
727
+ 2025-04-06 08:50:00,0.21,65.1,3.01,normal
728
+ 2025-04-06 09:00:00,0.24,62.8,3.2,normal
729
+ 2025-04-06 09:10:00,0.39,61.7,3.42,normal
730
+ 2025-04-06 09:20:00,0.3,63.5,3.39,normal
731
+ 2025-04-06 09:30:00,0.38,64.3,2.88,normal
732
+ 2025-04-06 09:40:00,0.31,61.4,3.38,normal
733
+ 2025-04-06 09:50:00,0.25,66.2,3.39,normal
734
+ 2025-04-06 10:00:00,0.97,78.1,4.92,fault
735
+ 2025-04-06 10:10:00,0.23,62.9,3.44,normal
736
+ 2025-04-06 10:20:00,0.75,83.9,5.0,fault
737
+ 2025-04-06 10:30:00,0.27,68.3,3.37,normal
738
+ 2025-04-06 10:40:00,0.46,66.2,3.33,normal
739
+ 2025-04-06 10:50:00,0.33,60.2,3.08,normal
740
+ 2025-04-06 11:00:00,0.27,69.8,3.06,normal
741
+ 2025-04-06 11:10:00,0.9,84.2,4.25,fault
742
+ 2025-04-06 11:20:00,0.47,69.4,2.86,normal
743
+ 2025-04-06 11:30:00,0.5,63.6,3.15,normal
744
+ 2025-04-06 11:40:00,0.61,77.0,4.67,fault
745
+ 2025-04-06 11:50:00,0.31,69.1,3.23,normal
746
+ 2025-04-06 12:00:00,0.33,62.7,3.29,normal
747
+ 2025-04-06 12:10:00,0.48,60.4,3.0,normal
748
+ 2025-04-06 12:20:00,0.28,64.5,3.47,normal
749
+ 2025-04-06 12:30:00,0.98,76.3,4.76,fault
750
+ 2025-04-06 12:40:00,0.24,60.2,3.39,normal
751
+ 2025-04-06 12:50:00,0.31,60.3,3.23,normal
752
+ 2025-04-06 13:00:00,0.77,81.6,4.37,fault
753
+ 2025-04-06 13:10:00,0.23,63.0,3.26,normal
754
+ 2025-04-06 13:20:00,0.39,67.1,3.43,normal
755
+ 2025-04-06 13:30:00,0.39,65.5,3.45,normal
756
+ 2025-04-06 13:40:00,0.48,63.4,2.82,normal
757
+ 2025-04-06 13:50:00,0.39,60.9,2.81,normal
758
+ 2025-04-06 14:00:00,0.26,68.8,3.34,normal
759
+ 2025-04-06 14:10:00,0.28,65.2,3.49,normal
760
+ 2025-04-06 14:20:00,0.33,64.9,2.93,normal
761
+ 2025-04-06 14:30:00,0.43,69.9,3.49,normal
762
+ 2025-04-06 14:40:00,0.24,67.2,2.81,normal
763
+ 2025-04-06 14:50:00,0.4,62.7,2.97,normal
764
+ 2025-04-06 15:00:00,0.35,62.7,3.42,normal
765
+ 2025-04-06 15:10:00,0.27,60.2,2.9,normal
766
+ 2025-04-06 15:20:00,0.28,65.0,3.02,normal
767
+ 2025-04-06 15:30:00,0.34,67.2,3.4,normal
768
+ 2025-04-06 15:40:00,0.34,61.8,3.28,normal
769
+ 2025-04-06 15:50:00,0.49,61.4,3.38,normal
770
+ 2025-04-06 16:00:00,0.31,60.7,3.06,normal
771
+ 2025-04-06 16:10:00,0.35,67.7,2.94,normal
772
+ 2025-04-06 16:20:00,0.81,78.6,4.14,fault
773
+ 2025-04-06 16:30:00,0.27,68.7,3.07,normal
774
+ 2025-04-06 16:40:00,0.2,69.5,2.94,normal
775
+ 2025-04-06 16:50:00,0.84,83.8,4.11,fault
776
+ 2025-04-06 17:00:00,0.26,61.8,3.28,normal
777
+ 2025-04-06 17:10:00,0.31,69.6,2.81,normal
778
+ 2025-04-06 17:20:00,0.23,60.2,3.14,normal
779
+ 2025-04-06 17:30:00,0.49,68.1,3.01,normal
780
+ 2025-04-06 17:40:00,0.27,65.4,3.35,normal
781
+ 2025-04-06 17:50:00,0.38,65.5,3.47,normal
782
+ 2025-04-06 18:00:00,0.26,63.3,2.99,normal
783
+ 2025-04-06 18:10:00,0.46,62.3,3.3,normal
784
+ 2025-04-06 18:20:00,0.74,82.5,4.85,fault
785
+ 2025-04-06 18:30:00,0.23,62.6,2.85,normal
786
+ 2025-04-06 18:40:00,0.22,61.8,3.16,normal
787
+ 2025-04-06 18:50:00,0.26,69.8,2.84,normal
788
+ 2025-04-06 19:00:00,0.34,65.4,3.45,normal
789
+ 2025-04-06 19:10:00,0.2,65.3,3.24,normal
790
+ 2025-04-06 19:20:00,0.69,75.3,4.15,fault
791
+ 2025-04-06 19:30:00,0.46,64.0,3.04,normal
792
+ 2025-04-06 19:40:00,0.82,79.7,4.43,fault
793
+ 2025-04-06 19:50:00,0.46,66.5,3.47,normal
794
+ 2025-04-06 20:00:00,0.23,64.5,2.98,normal
795
+ 2025-04-06 20:10:00,0.35,68.4,2.89,normal
796
+ 2025-04-06 20:20:00,0.5,66.6,3.46,normal
797
+ 2025-04-06 20:30:00,0.38,63.4,3.35,normal
798
+ 2025-04-06 20:40:00,0.42,68.2,2.9,normal
799
+ 2025-04-06 20:50:00,0.34,68.9,3.09,normal
800
+ 2025-04-06 21:00:00,0.5,60.3,2.82,normal
801
+ 2025-04-06 21:10:00,0.25,65.6,3.39,normal
802
+ 2025-04-06 21:20:00,0.36,64.2,3.29,normal
803
+ 2025-04-06 21:30:00,0.41,67.6,3.44,normal
804
+ 2025-04-06 21:40:00,0.28,68.6,2.83,normal
805
+ 2025-04-06 21:50:00,0.29,68.6,3.41,normal
806
+ 2025-04-06 22:00:00,0.48,65.8,3.3,normal
807
+ 2025-04-06 22:10:00,0.45,63.3,3.01,normal
808
+ 2025-04-06 22:20:00,0.48,61.5,3.09,normal
809
+ 2025-04-06 22:30:00,0.73,80.7,4.24,fault
810
+ 2025-04-06 22:40:00,0.2,62.1,3.43,normal
811
+ 2025-04-06 22:50:00,0.37,66.3,2.93,normal
812
+ 2025-04-06 23:00:00,0.46,63.0,3.16,normal
813
+ 2025-04-06 23:10:00,0.22,67.2,3.44,normal
814
+ 2025-04-06 23:20:00,0.23,60.4,2.92,normal
815
+ 2025-04-06 23:30:00,0.26,64.2,3.36,normal
816
+ 2025-04-06 23:40:00,0.74,75.8,4.96,fault
817
+ 2025-04-06 23:50:00,0.32,68.8,3.3,normal
818
+ 2025-04-07 00:00:00,0.86,81.8,4.49,fault
819
+ 2025-04-07 00:10:00,0.25,60.2,3.21,normal
820
+ 2025-04-07 00:20:00,0.99,84.1,4.07,fault
821
+ 2025-04-07 00:30:00,0.77,75.1,4.1,fault
822
+ 2025-04-07 00:40:00,0.91,78.2,4.67,fault
823
+ 2025-04-07 00:50:00,0.27,65.7,3.4,normal
824
+ 2025-04-07 01:00:00,0.22,67.2,3.46,normal
825
+ 2025-04-07 01:10:00,0.37,60.7,3.38,normal
826
+ 2025-04-07 01:20:00,0.41,62.8,2.9,normal
827
+ 2025-04-07 01:30:00,0.28,69.7,3.04,normal
828
+ 2025-04-07 01:40:00,0.5,67.4,2.98,normal
829
+ 2025-04-07 01:50:00,0.45,61.0,3.28,normal
830
+ 2025-04-07 02:00:00,0.22,64.2,3.22,normal
831
+ 2025-04-07 02:10:00,0.28,65.2,2.97,normal
832
+ 2025-04-07 02:20:00,0.23,65.7,3.25,normal
833
+ 2025-04-07 02:30:00,0.34,65.1,3.06,normal
834
+ 2025-04-07 02:40:00,0.38,64.3,3.24,normal
835
+ 2025-04-07 02:50:00,0.77,76.2,4.57,fault
836
+ 2025-04-07 03:00:00,0.21,68.9,3.4,normal
837
+ 2025-04-07 03:10:00,0.33,62.5,3.4,normal
838
+ 2025-04-07 03:20:00,0.2,67.4,2.98,normal
839
+ 2025-04-07 03:30:00,0.37,60.4,3.18,normal
840
+ 2025-04-07 03:40:00,0.2,66.4,3.21,normal
841
+ 2025-04-07 03:50:00,0.31,67.7,3.45,normal
842
+ 2025-04-07 04:00:00,0.34,67.9,3.39,normal
843
+ 2025-04-07 04:10:00,0.21,67.6,3.37,normal
844
+ 2025-04-07 04:20:00,0.24,61.2,3.22,normal
845
+ 2025-04-07 04:30:00,0.45,65.4,3.26,normal
846
+ 2025-04-07 04:40:00,0.47,62.7,3.06,normal
847
+ 2025-04-07 04:50:00,0.26,63.5,3.31,normal
848
+ 2025-04-07 05:00:00,0.77,80.2,4.33,fault
849
+ 2025-04-07 05:10:00,0.8,79.4,4.55,fault
850
+ 2025-04-07 05:20:00,0.41,69.9,3.04,normal
851
+ 2025-04-07 05:30:00,0.26,65.4,3.32,normal
852
+ 2025-04-07 05:40:00,0.34,65.2,3.14,normal
853
+ 2025-04-07 05:50:00,0.45,66.1,3.44,normal
854
+ 2025-04-07 06:00:00,0.81,78.2,4.39,fault
855
+ 2025-04-07 06:10:00,0.41,67.9,3.14,normal
856
+ 2025-04-07 06:20:00,0.37,63.7,3.25,normal
857
+ 2025-04-07 06:30:00,0.42,64.1,3.37,normal
858
+ 2025-04-07 06:40:00,0.24,62.0,3.18,normal
859
+ 2025-04-07 06:50:00,0.25,61.1,3.05,normal
860
+ 2025-04-07 07:00:00,0.49,67.7,2.9,normal
861
+ 2025-04-07 07:10:00,0.45,64.0,3.41,normal
862
+ 2025-04-07 07:20:00,0.49,67.6,3.19,normal
863
+ 2025-04-07 07:30:00,0.34,67.1,3.35,normal
864
+ 2025-04-07 07:40:00,0.91,76.6,4.74,fault
865
+ 2025-04-07 07:50:00,0.23,66.7,3.45,normal
866
+ 2025-04-07 08:00:00,0.83,78.0,4.71,fault
867
+ 2025-04-07 08:10:00,0.23,67.6,2.84,normal
868
+ 2025-04-07 08:20:00,0.47,65.9,2.99,normal
869
+ 2025-04-07 08:30:00,0.21,69.6,3.33,normal
870
+ 2025-04-07 08:40:00,0.38,65.7,3.35,normal
871
+ 2025-04-07 08:50:00,0.35,68.2,3.05,normal
872
+ 2025-04-07 09:00:00,0.21,67.2,3.13,normal
873
+ 2025-04-07 09:10:00,0.23,69.6,3.35,normal
874
+ 2025-04-07 09:20:00,0.46,65.7,2.96,normal
875
+ 2025-04-07 09:30:00,0.74,77.9,4.91,fault
876
+ 2025-04-07 09:40:00,0.4,63.9,2.8,normal
877
+ 2025-04-07 09:50:00,0.46,68.2,3.4,normal
878
+ 2025-04-07 10:00:00,0.42,63.3,3.15,normal
879
+ 2025-04-07 10:10:00,0.24,61.9,3.21,normal
880
+ 2025-04-07 10:20:00,0.24,62.2,2.87,normal
881
+ 2025-04-07 10:30:00,0.32,62.4,3.18,normal
882
+ 2025-04-07 10:40:00,0.71,78.5,4.71,fault
883
+ 2025-04-07 10:50:00,0.46,67.5,3.06,normal
884
+ 2025-04-07 11:00:00,0.27,63.9,3.09,normal
885
+ 2025-04-07 11:10:00,0.25,68.1,3.18,normal
886
+ 2025-04-07 11:20:00,0.5,66.3,3.14,normal
887
+ 2025-04-07 11:30:00,0.4,65.1,3.08,normal
888
+ 2025-04-07 11:40:00,0.35,61.8,3.08,normal
889
+ 2025-04-07 11:50:00,0.27,64.6,2.93,normal
890
+ 2025-04-07 12:00:00,0.27,65.4,3.35,normal
891
+ 2025-04-07 12:10:00,0.25,68.7,3.03,normal
892
+ 2025-04-07 12:20:00,0.43,67.9,2.87,normal
893
+ 2025-04-07 12:30:00,0.38,62.2,3.08,normal
894
+ 2025-04-07 12:40:00,0.43,65.9,3.43,normal
895
+ 2025-04-07 12:50:00,0.26,68.1,3.46,normal
896
+ 2025-04-07 13:00:00,0.49,64.0,3.24,normal
897
+ 2025-04-07 13:10:00,0.62,82.5,4.09,fault
898
+ 2025-04-07 13:20:00,0.48,66.8,3.49,normal
899
+ 2025-04-07 13:30:00,0.45,64.3,3.26,normal
900
+ 2025-04-07 13:40:00,0.32,60.2,2.88,normal
901
+ 2025-04-07 13:50:00,0.3,69.6,2.83,normal
902
+ 2025-04-07 14:00:00,0.21,65.9,3.23,normal
903
+ 2025-04-07 14:10:00,0.21,61.3,3.39,normal
904
+ 2025-04-07 14:20:00,0.4,68.7,3.14,normal
905
+ 2025-04-07 14:30:00,0.77,75.2,4.8,fault
906
+ 2025-04-07 14:40:00,0.62,79.1,4.6,fault
907
+ 2025-04-07 14:50:00,0.28,66.4,2.87,normal
908
+ 2025-04-07 15:00:00,0.26,67.6,3.44,normal
909
+ 2025-04-07 15:10:00,0.25,61.5,3.48,normal
910
+ 2025-04-07 15:20:00,0.49,63.8,2.84,normal
911
+ 2025-04-07 15:30:00,0.37,64.6,3.25,normal
912
+ 2025-04-07 15:40:00,0.4,60.4,3.37,normal
913
+ 2025-04-07 15:50:00,0.68,78.7,4.34,fault
914
+ 2025-04-07 16:00:00,0.33,62.1,2.83,normal
915
+ 2025-04-07 16:10:00,0.36,60.6,3.38,normal
916
+ 2025-04-07 16:20:00,0.45,64.2,3.29,normal
917
+ 2025-04-07 16:30:00,0.4,60.6,3.48,normal
918
+ 2025-04-07 16:40:00,0.85,75.4,4.11,fault
919
+ 2025-04-07 16:50:00,0.25,65.0,2.81,normal
920
+ 2025-04-07 17:00:00,0.39,63.8,3.17,normal
921
+ 2025-04-07 17:10:00,0.82,82.3,4.57,fault
922
+ 2025-04-07 17:20:00,0.32,64.2,3.34,normal
923
+ 2025-04-07 17:30:00,0.39,63.7,3.42,normal
924
+ 2025-04-07 17:40:00,0.33,68.6,3.24,normal
925
+ 2025-04-07 17:50:00,0.47,61.9,3.03,normal
926
+ 2025-04-07 18:00:00,0.31,61.1,3.04,normal
927
+ 2025-04-07 18:10:00,0.66,79.9,4.07,fault
928
+ 2025-04-07 18:20:00,0.81,83.7,4.1,fault
929
+ 2025-04-07 18:30:00,0.35,60.6,2.94,normal
930
+ 2025-04-07 18:40:00,0.49,63.2,3.27,normal
931
+ 2025-04-07 18:50:00,0.45,66.5,2.96,normal
932
+ 2025-04-07 19:00:00,0.46,65.3,2.91,normal
933
+ 2025-04-07 19:10:00,0.45,67.1,2.85,normal
934
+ 2025-04-07 19:20:00,0.48,63.1,3.03,normal
935
+ 2025-04-07 19:30:00,0.43,67.5,3.17,normal
936
+ 2025-04-07 19:40:00,0.27,64.6,3.45,normal
937
+ 2025-04-07 19:50:00,0.22,69.4,3.35,normal
938
+ 2025-04-07 20:00:00,0.49,69.0,3.48,normal
939
+ 2025-04-07 20:10:00,0.35,65.2,3.26,normal
940
+ 2025-04-07 20:20:00,0.36,63.2,3.23,normal
941
+ 2025-04-07 20:30:00,0.21,66.0,2.95,normal
942
+ 2025-04-07 20:40:00,0.43,65.0,3.11,normal
943
+ 2025-04-07 20:50:00,0.38,67.7,3.32,normal
944
+ 2025-04-07 21:00:00,0.36,61.8,3.19,normal
945
+ 2025-04-07 21:10:00,0.2,64.4,2.95,normal
946
+ 2025-04-07 21:20:00,0.7,75.5,4.37,fault
947
+ 2025-04-07 21:30:00,0.43,65.0,3.22,normal
948
+ 2025-04-07 21:40:00,0.29,61.2,2.99,normal
949
+ 2025-04-07 21:50:00,0.85,78.2,4.53,fault
950
+ 2025-04-07 22:00:00,0.69,79.6,4.63,fault
951
+ 2025-04-07 22:10:00,0.45,60.5,3.1,normal
952
+ 2025-04-07 22:20:00,0.27,68.6,3.4,normal
953
+ 2025-04-07 22:30:00,0.45,63.0,3.02,normal
954
+ 2025-04-07 22:40:00,0.32,62.4,2.92,normal
955
+ 2025-04-07 22:50:00,0.21,64.2,3.47,normal
956
+ 2025-04-07 23:00:00,0.35,68.7,3.33,normal
957
+ 2025-04-07 23:10:00,0.5,65.7,3.02,normal
958
+ 2025-04-07 23:20:00,0.44,68.0,3.39,normal
959
+ 2025-04-07 23:30:00,0.42,68.0,3.25,normal
960
+ 2025-04-07 23:40:00,0.23,62.3,2.8,normal
961
+ 2025-04-07 23:50:00,0.26,65.5,3.0,normal
962
+ 2025-04-08 00:00:00,0.43,64.0,2.87,normal
963
+ 2025-04-08 00:10:00,0.3,68.5,2.92,normal
964
+ 2025-04-08 00:20:00,0.94,79.6,4.09,fault
965
+ 2025-04-08 00:30:00,0.24,61.7,2.82,normal
966
+ 2025-04-08 00:40:00,0.26,61.2,2.99,normal
967
+ 2025-04-08 00:50:00,0.26,60.8,2.93,normal
968
+ 2025-04-08 01:00:00,0.47,64.4,3.3,normal
969
+ 2025-04-08 01:10:00,0.21,68.5,3.06,normal
970
+ 2025-04-08 01:20:00,0.28,68.1,2.93,normal
971
+ 2025-04-08 01:30:00,0.47,69.0,3.39,normal
972
+ 2025-04-08 01:40:00,0.89,84.9,4.2,fault
973
+ 2025-04-08 01:50:00,0.88,81.2,4.0,fault
974
+ 2025-04-08 02:00:00,0.74,84.7,4.61,fault
975
+ 2025-04-08 02:10:00,0.35,65.1,3.22,normal
976
+ 2025-04-08 02:20:00,0.25,65.9,3.43,normal
977
+ 2025-04-08 02:30:00,0.39,67.5,3.05,normal
978
+ 2025-04-08 02:40:00,0.41,63.8,3.33,normal
979
+ 2025-04-08 02:50:00,0.3,64.5,3.36,normal
980
+ 2025-04-08 03:00:00,0.27,69.3,3.07,normal
981
+ 2025-04-08 03:10:00,0.47,66.1,3.34,normal
982
+ 2025-04-08 03:20:00,0.3,62.5,3.15,normal
983
+ 2025-04-08 03:30:00,0.45,63.4,3.15,normal
984
+ 2025-04-08 03:40:00,0.22,66.0,2.86,normal
985
+ 2025-04-08 03:50:00,0.28,62.5,3.45,normal
986
+ 2025-04-08 04:00:00,0.21,60.6,3.3,normal
987
+ 2025-04-08 04:10:00,0.65,77.4,4.46,fault
988
+ 2025-04-08 04:20:00,0.83,75.2,4.3,fault
989
+ 2025-04-08 04:30:00,0.42,60.9,2.93,normal
990
+ 2025-04-08 04:40:00,0.33,60.3,3.07,normal
991
+ 2025-04-08 04:50:00,0.28,69.3,3.22,normal
992
+ 2025-04-08 05:00:00,0.37,65.6,3.17,normal
993
+ 2025-04-08 05:10:00,0.25,61.3,3.46,normal
994
+ 2025-04-08 05:20:00,0.28,69.5,3.22,normal
995
+ 2025-04-08 05:30:00,0.44,69.4,3.38,normal
996
+ 2025-04-08 05:40:00,0.24,67.5,3.28,normal
997
+ 2025-04-08 05:50:00,0.84,78.0,4.46,fault
998
+ 2025-04-08 06:00:00,0.24,62.8,3.47,normal
999
+ 2025-04-08 06:10:00,0.95,78.8,4.74,fault
1000
+ 2025-04-08 06:20:00,0.21,66.9,2.84,normal
1001
+ 2025-04-08 06:30:00,0.4,63.5,3.38,normal
model_comparison_20250420_0853.csv ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ النموذج,التنبؤ الأفضل,الخطأ في الأفضل,التنبؤ الأسوأ,الخطأ في الأسوأ,وقت الأفضل,وقت الأسوأ
2
+ Random Forest,-0.00,0.00,3267.32,10532.68,2025-04-01 08:50:00,2025-04-01 21:20:00
3
+ LSTM,2978.68,21.32,3196.60,10603.40,2025-04-01 22:20:00,2025-04-01 19:10:00
4
+ Linear Regression,6.43,6.43,3525.86,10274.14,2025-04-01 19:40:00,2025-04-01 21:20:00
5
+ Decision Tree Regressor,-0.00,0.00,2344.19,11455.81,2025-04-01 08:50:00,2025-04-01 21:20:00
requirements.txt ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ gradio>=4.0
2
+ pandas
3
+ numpy
4
+ tensorflow
5
+ scikit-learn
6
+ pickle-mixin