Phramer_AI / optimizer.py
Malaji71's picture
Update optimizer.py
84abbe3 verified
raw
history blame
19.2 kB
"""
Ultra Supreme Optimizer - Main optimization engine for image analysis
VERSIΓ“N FLORENCE-2 - Usa Florence-2 en lugar de CLIP Interrogator
"""
# IMPORTANT: spaces must be imported BEFORE torch or any CUDA-using library
import spaces
import gc
import logging
import re
from datetime import datetime
from typing import Tuple, Dict, Any, Optional
import torch
import numpy as np
from PIL import Image
from transformers import AutoProcessor, AutoModelForCausalLM
from analyzer import UltraSupremeAnalyzer
logger = logging.getLogger(__name__)
class UltraSupremeOptimizer:
"""Main optimizer class for ultra supreme image analysis"""
def __init__(self):
self.processor = None
self.model = None
self.analyzer = UltraSupremeAnalyzer()
self.usage_count = 0
self.device = self._get_device()
self.is_initialized = False
@staticmethod
def _get_device() -> str:
"""Determine the best available device for computation"""
if torch.cuda.is_available():
return "cuda"
elif torch.backends.mps.is_available():
return "mps"
else:
return "cpu"
def initialize_model(self) -> bool:
"""Initialize Florence-2 model"""
if self.is_initialized:
return True
try:
logger.info("Loading Florence-2 model...")
# Load Florence-2 base model (you can also use 'microsoft/Florence-2-large' for better quality)
model_id = "microsoft/Florence-2-base"
self.processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)
self.model = AutoModelForCausalLM.from_pretrained(
model_id,
trust_remote_code=True,
torch_dtype=torch.float16 if self.device == "cuda" else torch.float32
)
# Keep model on CPU initially
self.model = self.model.to("cpu")
self.model.eval()
self.is_initialized = True
# Clean up memory after initialization
gc.collect()
logger.info("Florence-2 model initialized successfully")
return True
except Exception as e:
logger.error(f"Model initialization error: {e}")
return False
def optimize_image(self, image: Any) -> Optional[Image.Image]:
"""Optimize image for processing"""
if image is None:
return None
try:
# Convert to PIL Image if necessary
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
elif not isinstance(image, Image.Image):
image = Image.open(image)
# Convert to RGB if necessary
if image.mode != 'RGB':
image = image.convert('RGB')
# Florence-2 handles various sizes well, but let's be reasonable
max_size = 1024
if image.size[0] > max_size or image.size[1] > max_size:
image.thumbnail((max_size, max_size), Image.Resampling.LANCZOS)
return image
except Exception as e:
logger.error(f"Image optimization error: {e}")
return None
def apply_flux_rules(self, base_prompt: str) -> str:
"""Aplica las reglas de Flux a un prompt base"""
# Limpiar el prompt de elementos no deseados
cleanup_patterns = [
r',\s*trending on artstation',
r',\s*trending on [^,]+',
r',\s*\d+k\s*',
r',\s*\d+k resolution',
r',\s*artstation',
r',\s*concept art',
r',\s*digital art',
r',\s*by greg rutkowski',
]
cleaned_prompt = base_prompt
for pattern in cleanup_patterns:
cleaned_prompt = re.sub(pattern, '', cleaned_prompt, flags=re.IGNORECASE)
# Detectar el tipo de imagen para aΓ±adir configuraciΓ³n de cΓ‘mara apropiada
camera_config = ""
if any(word in base_prompt.lower() for word in ['portrait', 'person', 'man', 'woman', 'face']):
camera_config = ", Shot on Hasselblad X2D 100C, 90mm f/2.5 lens at f/2.8, professional portrait photography"
elif any(word in base_prompt.lower() for word in ['landscape', 'mountain', 'nature', 'outdoor']):
camera_config = ", Shot on Phase One XT, 40mm f/4 lens at f/8, epic landscape photography"
elif any(word in base_prompt.lower() for word in ['street', 'urban', 'city']):
camera_config = ", Shot on Leica M11, 35mm f/1.4 lens at f/2.8, documentary street photography"
else:
camera_config = ", Shot on Phase One XF IQ4, 80mm f/2.8 lens at f/4, professional photography"
# AΓ±adir mejoras de iluminaciΓ³n si no estΓ‘n presentes
if 'lighting' not in cleaned_prompt.lower():
if 'dramatic' in cleaned_prompt.lower():
cleaned_prompt += ", dramatic cinematic lighting"
elif 'portrait' in cleaned_prompt.lower():
cleaned_prompt += ", professional studio lighting with subtle rim light"
else:
cleaned_prompt += ", masterful natural lighting"
# Construir el prompt final
final_prompt = cleaned_prompt + camera_config
# Asegurar que empiece con mayΓΊscula
final_prompt = final_prompt[0].upper() + final_prompt[1:] if final_prompt else final_prompt
# Limpiar espacios y comas duplicadas
final_prompt = re.sub(r'\s+', ' ', final_prompt)
final_prompt = re.sub(r',\s*,+', ',', final_prompt)
return final_prompt
@spaces.GPU(duration=60)
def run_florence_inference(self, image: Image.Image) -> Tuple[str, str, str]:
"""Run Florence-2 inference on GPU"""
try:
# Move model to GPU
self.model = self.model.to("cuda")
logger.info("Florence-2 model moved to GPU")
# Task prompts for different types of analysis
tasks = {
"detailed_caption": "<DETAILED_CAPTION>",
"more_detailed_caption": "<MORE_DETAILED_CAPTION>",
"caption": "<CAPTION>",
"dense_region_caption": "<DENSE_REGION_CAPTION>"
}
results = {}
# Run different captioning tasks
for task_name, task_prompt in tasks.items():
try:
inputs = self.processor(text=task_prompt, images=image, return_tensors="pt")
inputs = {k: v.to("cuda") for k, v in inputs.items()}
with torch.cuda.amp.autocast(dtype=torch.float16):
generated_ids = self.model.generate(
input_ids=inputs["input_ids"],
pixel_values=inputs["pixel_values"],
max_new_tokens=1024,
num_beams=3,
do_sample=False
)
generated_text = self.processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
parsed = self.processor.post_process_generation(generated_text, task=task_prompt, image_size=(image.width, image.height))
# Extract the caption from the parsed result
if task_prompt in parsed:
results[task_name] = parsed[task_prompt]
else:
# Sometimes the result is directly in the parsed output
results[task_name] = str(parsed) if parsed else ""
except Exception as e:
logger.warning(f"Error in {task_name}: {e}")
results[task_name] = ""
# Extract results
detailed_caption = results.get("detailed_caption", "")
more_detailed = results.get("more_detailed_caption", "")
caption = results.get("caption", "")
# Combine for a comprehensive description
if more_detailed:
full_prompt = more_detailed
elif detailed_caption:
full_prompt = detailed_caption
else:
full_prompt = caption
# Use different levels as our three outputs
clip_fast = caption if caption else "A photograph"
clip_classic = detailed_caption if detailed_caption else full_prompt
clip_best = more_detailed if more_detailed else full_prompt
logger.info(f"Florence-2 captions generated successfully")
return full_prompt, clip_fast, clip_classic
except Exception as e:
logger.error(f"Florence-2 inference error: {e}")
# Move model back to CPU to free GPU memory
self.model = self.model.to("cpu")
raise e
finally:
# Always move model back to CPU after inference
self.model = self.model.to("cpu")
torch.cuda.empty_cache()
def generate_ultra_supreme_prompt(self, image: Any) -> Tuple[str, str, int, Dict[str, int]]:
"""
Generate ultra supreme prompt from image usando Florence-2
Returns:
Tuple of (prompt, analysis_info, score, breakdown)
"""
try:
# Inicializar modelo si no estΓ‘ inicializado
if not self.is_initialized:
if not self.initialize_model():
return "❌ Model initialization failed.", "Please refresh and try again.", 0, {}
# Validate input
if image is None:
return "❌ Please upload an image.", "No image provided.", 0, {}
self.usage_count += 1
# Optimize image
image = self.optimize_image(image)
if image is None:
return "❌ Image processing failed.", "Invalid image format.", 0, {}
start_time = datetime.now()
logger.info("ULTRA SUPREME ANALYSIS - Starting with Florence-2")
# Ejecutar inferencia Florence-2
try:
full_prompt, caption_fast, caption_detailed = self.run_florence_inference(image)
except Exception as e:
logger.error(f"Florence-2 failed: {e}")
# Fallback bΓ‘sico
full_prompt = "A photograph"
caption_fast = "image"
caption_detailed = "detailed image"
logger.info(f"Florence-2 caption: {full_prompt[:100]}...")
# Ejecutar anΓ‘lisis ultra supremo con mΓΊltiples modelos
logger.info("Running multi-model ultra supreme analysis...")
ultra_analysis = self.analyzer.ultra_supreme_analysis(
image, caption_fast, caption_detailed, full_prompt
)
# Construir prompt mejorado basado en anΓ‘lisis completo
enhanced_prompt_parts = []
# Base prompt de Florence
enhanced_prompt_parts.append(full_prompt)
# Agregar informaciΓ³n demogrΓ‘fica si estΓ‘ disponible
if ultra_analysis["demographic"]["gender"] and ultra_analysis["demographic"]["gender_confidence"] > 0.7:
gender = ultra_analysis["demographic"]["gender"]
age_cat = ultra_analysis["demographic"]["age_category"]
if age_cat:
enhanced_prompt_parts.append(f"{age_cat} {gender}")
# Agregar estado emocional principal
if ultra_analysis["emotional_state"]["primary_emotion"] and ultra_analysis["emotional_state"]["emotion_confidence"] > 0.6:
emotion = ultra_analysis["emotional_state"]["primary_emotion"]
enhanced_prompt_parts.append(f"{emotion} expression")
# Agregar informaciΓ³n de pose si estΓ‘ disponible
if ultra_analysis["pose_composition"]["posture"]:
enhanced_prompt_parts.append(ultra_analysis["pose_composition"]["posture"][0])
# Combinar y aplicar reglas de Flux
combined_prompt = ", ".join(enhanced_prompt_parts)
optimized_prompt = self.apply_flux_rules(combined_prompt)
# Si el analyzer enriqueciΓ³ el prompt, ΓΊsalo
analyzer_prompt = self.analyzer.build_ultra_supreme_prompt(ultra_analysis, [full_prompt])
if len(analyzer_prompt) > len(optimized_prompt):
optimized_prompt = self.apply_flux_rules(analyzer_prompt)
# Calcular score usando el analyzer
score, breakdown = self.analyzer.calculate_ultra_supreme_score(optimized_prompt, ultra_analysis)
end_time = datetime.now()
duration = (end_time - start_time).total_seconds()
# Memory cleanup
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
# Generate enhanced analysis report con datos de mΓΊltiples modelos
analysis_info = self._generate_ultra_analysis_report(
ultra_analysis, score, breakdown, duration, "Florence-2"
)
return optimized_prompt, analysis_info, score, breakdown
except Exception as e:
logger.error(f"Ultra supreme generation error: {e}", exc_info=True)
return f"❌ Error: {str(e)}", "Please try with a different image.", 0, {}
def _generate_ultra_analysis_report(self, analysis: Dict[str, Any],
score: int, breakdown: Dict[str, int],
duration: float, caption_model: str = "Florence-2") -> str:
"""Generate ultra detailed analysis report with multi-model results"""
device_used = "cuda" if torch.cuda.is_available() else "cpu"
gpu_status = "⚑ ZeroGPU" if device_used == "cuda" else "πŸ’» CPU"
# Demographic info
demo_info = ""
if analysis["demographic"]["age_category"]:
age = analysis["demographic"]["age_category"].replace("_", " ").title()
gender = analysis["demographic"]["gender"] or "person"
confidence = analysis["demographic"]["age_confidence"]
demo_info = f"**Detected:** {age} {gender} (confidence: {confidence:.0%})"
# Emotion info
emotion_info = ""
if analysis["emotional_state"]["primary_emotion"]:
emotion = analysis["emotional_state"]["primary_emotion"]
confidence = analysis["emotional_state"]["emotion_confidence"]
emotion_info = f"**Primary Emotion:** {emotion} ({confidence:.0%})"
# Add emotion distribution if available
if analysis["emotional_state"]["emotion_distribution"]:
top_emotions = sorted(
analysis["emotional_state"]["emotion_distribution"].items(),
key=lambda x: x[1], reverse=True
)[:3]
emotion_details = ", ".join([f"{e[0]}: {e[1]:.0%}" for e in top_emotions])
emotion_info += f"\n**Emotion Distribution:** {emotion_details}"
# Face analysis info
face_info = f"**Faces Detected:** {analysis['facial_ultra']['face_count']}"
if analysis['facial_ultra']['face_count'] > 0:
features = []
for feature_type in ['eyes', 'mouth', 'facial_hair', 'skin']:
if analysis['facial_ultra'].get(feature_type):
features.extend(analysis['facial_ultra'][feature_type])
if features:
face_info += f"\n**Facial Features:** {', '.join(features[:5])}"
# Pose info
pose_info = ""
if analysis["pose_composition"].get("pose_confidence", 0) > 0:
confidence = analysis["pose_composition"]["pose_confidence"]
pose_info = f"**Pose Analysis:** Body detected ({confidence:.0%} confidence)"
if analysis["pose_composition"]["posture"]:
pose_info += f"\n**Posture:** {', '.join(analysis['pose_composition']['posture'])}"
# Environment info
env_info = ""
if analysis["environmental"]["setting_type"]:
env_info = f"**Setting:** {analysis['environmental']['setting_type'].replace('_', ' ').title()}"
if analysis["environmental"]["lighting_analysis"]:
env_info += f"\n**Lighting:** {', '.join(analysis['environmental']['lighting_analysis'])}"
# Intelligence metrics
metrics = analysis["intelligence_metrics"]
# Caption info
caption_info = analysis.get("clip_best", "")[:150] + "..." if len(analysis.get("clip_best", "")) > 150 else analysis.get("clip_best", "")
analysis_info = f"""**πŸš€ ULTRA SUPREME MULTI-MODEL ANALYSIS COMPLETE**
**Processing:** {gpu_status} β€’ {duration:.1f}s β€’ {caption_model} + Multi-Model Pipeline
**Ultra Score:** {score}/100 β€’ Models: {caption_model} + DeepFace + MediaPipe + Transformers
**πŸ“Š BREAKDOWN:**
β€’ Prompt Quality: {breakdown.get('prompt_quality', 0)}/25
β€’ Analysis Depth: {breakdown.get('analysis_depth', 0)}/25
β€’ Model Confidence: {breakdown.get('model_confidence', 0)}/25
β€’ Feature Richness: {breakdown.get('feature_richness', 0)}/25
**πŸ“ VISION-LANGUAGE ANALYSIS:**
**{caption_model} Caption:** {caption_info}
**🧠 DEEP ANALYSIS RESULTS:**
**πŸ‘€ DEMOGRAPHICS & IDENTITY:**
{demo_info or "No face detected for demographic analysis"}
**😊 EMOTIONAL ANALYSIS:**
{emotion_info or "No emotional data available"}
**πŸ‘οΈ FACIAL ANALYSIS:**
{face_info}
**🚢 POSE & BODY LANGUAGE:**
{pose_info or "No pose data available"}
**🏞️ ENVIRONMENT & SCENE:**
{env_info or "No environmental data detected"}
**πŸ“Š INTELLIGENCE METRICS:**
β€’ **Total Features Detected:** {metrics['total_features_detected']}
β€’ **Analysis Depth Score:** {metrics['analysis_depth_score']}/100
β€’ **Model Confidence Average:** {metrics['model_confidence_average']:.0%}
β€’ **Technical Optimization:** {metrics['technical_optimization_score']}/100
**✨ MULTI-MODEL ADVANTAGES:**
βœ… {caption_model}: State-of-the-art vision-language understanding
βœ… DeepFace: Accurate age, gender, emotion detection
βœ… MediaPipe: Body pose and gesture analysis
βœ… Transformers: Advanced emotion classification
βœ… OpenCV: Robust face detection
**πŸ”¬ Powered by Pariente AI Research β€’ Ultra Supreme Intelligence Engine**"""
return analysis_info