Spaces:
Sleeping
Sleeping
import streamlit as st | |
import pickle | |
import pandas as pd | |
import requests | |
def fetch_poster(movie_id): | |
response = requests.get('https://api.themoviedb.org/3/movie/{}?api_key=8265bd1679663a7ea12ac168da84d2e8&language=en-US'.format(movie_id)) | |
data = response.json() | |
return "https://image.tmdb.org/t/p/w500/" + data['poster_path'] | |
def recommend(movie): | |
movie_index = movies[movies['title'] == movie].index[0] | |
distances = similarity[movie_index] | |
movies_list = sorted(list(enumerate(distances)), reverse=True, key=lambda x:x[1])[1:6] | |
recomended_movies = [] | |
recommended_movies_posters = [] | |
for i in movies_list: | |
movie_id= movies.iloc[i[0]].movie_id | |
recomended_movies.append(movies.iloc[i[0]].title) | |
recommended_movies_posters.append(fetch_poster(movie_id)) | |
return recomended_movies, recommended_movies_posters | |
movies_dict = pickle.load(open('movie_dict.pkl', 'rb')) | |
movies = pd.DataFrame(movies_dict) | |
similarity = pickle.load(open('similarity.pkl', 'rb')) | |
st.title('Movie Recommender System') | |
selected_movie_name = st.selectbox( | |
'How', | |
movies['title'].values | |
) | |
if st.button('Recommend'): | |
recommended_movie_names, recommended_movie_posters = recommend(selected_movie_name) | |
col1, col2, col3, col4, col5 = st.columns(5) | |
with col1: | |
st.text(recommended_movie_names[0]) | |
st.image(recommended_movie_posters[0]) | |
with col2: | |
st.text(recommended_movie_names[1]) | |
st.image(recommended_movie_posters[1]) | |
with col3: | |
st.text(recommended_movie_names[2]) | |
st.image(recommended_movie_posters[2]) | |
with col4: | |
st.text(recommended_movie_names[3]) | |
st.image(recommended_movie_posters[3]) | |
with col5: | |
st.text(recommended_movie_names[4]) | |
st.image(recommended_movie_posters[4]) | |