Upload app.py with huggingface_hub
Browse files
app.py
CHANGED
@@ -1,59 +1,109 @@
|
|
1 |
|
2 |
-
import
|
3 |
-
import ctranslate2
|
4 |
-
from transformers import AutoTokenizer
|
5 |
-
from huggingface_hub import snapshot_download
|
6 |
-
from codeexecutor import
|
|
|
7 |
|
8 |
# Define the model and tokenizer loading
|
9 |
-
model_prompt = "
|
10 |
tokenizer = AutoTokenizer.from_pretrained("AI-MO/NuminaMath-7B-TIR")
|
11 |
model_path = snapshot_download(repo_id="Makima57/deepseek-math-Numina")
|
12 |
generator = ctranslate2.Generator(model_path, device="cpu", compute_type="int8")
|
13 |
-
iterations=10
|
14 |
|
15 |
# Function to generate predictions using the model
|
16 |
def get_prediction(question):
|
17 |
input_text = model_prompt + question
|
18 |
input_tokens = tokenizer.tokenize(input_text)
|
19 |
-
results = generator.generate_batch(
|
|
|
|
|
|
|
|
|
|
|
20 |
output_tokens = results[0].sequences[0]
|
21 |
predicted_answer = tokenizer.convert_tokens_to_string(output_tokens)
|
22 |
-
return predicted_answer
|
23 |
|
24 |
-
# Function to
|
25 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
all_predictions = []
|
27 |
-
|
|
|
|
|
28 |
for _ in range(num_iterations):
|
29 |
prediction = get_prediction(question)
|
30 |
-
answer=
|
31 |
all_predictions.append(prediction)
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
# Input field for correct answer
|
45 |
-
correct_answer = st.text_input("Correct Answer", placeholder="Enter the correct answer here...")
|
46 |
-
|
47 |
-
# Button to trigger prediction
|
48 |
-
if st.button("Get Prediction"):
|
49 |
-
if question and correct_answer:
|
50 |
-
final_prediction, all_predictions,final_answer = majority_vote(question, iterations)
|
51 |
-
st.write("Question: ", question)
|
52 |
-
st.write("Generated Answers (10 iterations): ", all_predictions)
|
53 |
-
st.write("Majority-Voted Prediction: ", final_prediction)
|
54 |
-
st.write("Correct solution: ", correct_answer)
|
55 |
-
st.write("Majority answer: ", final_answer)
|
56 |
else:
|
57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
|
|
|
1 |
|
2 |
+
import gradio as gr
|
3 |
+
import ctranslate2
|
4 |
+
from transformers import AutoTokenizer
|
5 |
+
from huggingface_hub import snapshot_download
|
6 |
+
from codeexecutor import get_majority_vote
|
7 |
+
import re
|
8 |
|
9 |
# Define the model and tokenizer loading
|
10 |
+
model_prompt = "Explain and solve the following mathematical problem step by step, showing all work: "
|
11 |
tokenizer = AutoTokenizer.from_pretrained("AI-MO/NuminaMath-7B-TIR")
|
12 |
model_path = snapshot_download(repo_id="Makima57/deepseek-math-Numina")
|
13 |
generator = ctranslate2.Generator(model_path, device="cpu", compute_type="int8")
|
14 |
+
iterations = 10
|
15 |
|
16 |
# Function to generate predictions using the model
|
17 |
def get_prediction(question):
|
18 |
input_text = model_prompt + question
|
19 |
input_tokens = tokenizer.tokenize(input_text)
|
20 |
+
results = generator.generate_batch(
|
21 |
+
[input_tokens],
|
22 |
+
max_length=512,
|
23 |
+
sampling_temperature=0.7,
|
24 |
+
sampling_topk=40,
|
25 |
+
)
|
26 |
output_tokens = results[0].sequences[0]
|
27 |
predicted_answer = tokenizer.convert_tokens_to_string(output_tokens)
|
28 |
+
return predicted_answer
|
29 |
|
30 |
+
# Function to parse the prediction to extract the answer and steps
|
31 |
+
def parse_prediction(prediction):
|
32 |
+
lines = prediction.strip().split('
|
33 |
+
')
|
34 |
+
answer = None
|
35 |
+
steps = []
|
36 |
+
for line in lines:
|
37 |
+
# Check for "Answer:" or "answer:"
|
38 |
+
match = re.match(r'^\s*(?:Answer|answer)\s*[:=]\s*(.*)', line)
|
39 |
+
if match:
|
40 |
+
answer = match.group(1).strip()
|
41 |
+
else:
|
42 |
+
steps.append(line)
|
43 |
+
if answer is None:
|
44 |
+
# If no "Answer:" found, assume last line is the answer
|
45 |
+
answer = lines[-1].strip()
|
46 |
+
steps = lines[:-1]
|
47 |
+
steps_text = '
|
48 |
+
'.join(steps).strip()
|
49 |
+
return answer, steps_text
|
50 |
+
|
51 |
+
# Function to perform majority voting and get steps
|
52 |
+
def majority_vote_with_steps(question, num_iterations=10):
|
53 |
all_predictions = []
|
54 |
+
all_answers = []
|
55 |
+
steps_list = []
|
56 |
+
|
57 |
for _ in range(num_iterations):
|
58 |
prediction = get_prediction(question)
|
59 |
+
answer, steps = parse_prediction(prediction)
|
60 |
all_predictions.append(prediction)
|
61 |
+
all_answers.append(answer)
|
62 |
+
steps_list.append(steps)
|
63 |
+
|
64 |
+
# Get the majority voted answer
|
65 |
+
majority_voted_ans = get_majority_vote(all_answers)
|
66 |
+
|
67 |
+
# Find the steps corresponding to the majority voted answer
|
68 |
+
for i, ans in enumerate(all_answers):
|
69 |
+
if ans == majority_voted_ans:
|
70 |
+
steps_solution = steps_list[i]
|
71 |
+
break
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
else:
|
73 |
+
steps_solution = "No steps found"
|
74 |
+
|
75 |
+
return majority_voted_ans, steps_solution
|
76 |
+
|
77 |
+
# Gradio interface for user input and output
|
78 |
+
def gradio_interface(question, correct_answer):
|
79 |
+
final_answer, steps_solution = majority_vote_with_steps(question, iterations)
|
80 |
+
return {
|
81 |
+
"Question": question,
|
82 |
+
"Majority-Voted Answer": final_answer,
|
83 |
+
"Steps to Solve": steps_solution,
|
84 |
+
"Correct Solution": correct_answer
|
85 |
+
}
|
86 |
+
|
87 |
+
# Custom CSS for enhanced design (unchanged)
|
88 |
+
|
89 |
+
|
90 |
+
# Gradio app setup
|
91 |
+
interface = gr.Interface(
|
92 |
+
fn=gradio_interface,
|
93 |
+
inputs=[
|
94 |
+
gr.Textbox(label="π§ Math Question", placeholder="Enter your math question here...", elem_id="math_question"),
|
95 |
+
gr.Textbox(label="β
Correct Answer", placeholder="Enter the correct answer here...", elem_id="correct_answer"),
|
96 |
+
],
|
97 |
+
outputs=[
|
98 |
+
gr.JSON(label="π Results"), # Display the results in a JSON format
|
99 |
+
],
|
100 |
+
title="π’ Math Question Solver",
|
101 |
+
description="Enter a math question to get the model's majority-voted answer and steps to solve the problem.",
|
102 |
+
|
103 |
+
)
|
104 |
+
|
105 |
+
if __name__ == "__main__":
|
106 |
+
interface.launch()
|
107 |
+
|
108 |
|
109 |
|