Spaces:
Running
Running
| from typing import List, Tuple, Union | |
| import cv2 | |
| from numpy import ndarray | |
| MAJOR, MINOR = map(int, cv2.__version__.split('.')[:2]) | |
| assert MAJOR == 4 | |
| def non_max_suppression(boxes: Union[List[ndarray], Tuple[ndarray]], | |
| scores: Union[List[float], Tuple[float]], | |
| labels: Union[List[int], Tuple[int]], | |
| conf_thres: float = 0.25, | |
| iou_thres: float = 0.65) -> Tuple[List, List, List]: | |
| if MINOR >= 7: | |
| indices = cv2.dnn.NMSBoxesBatched(boxes, scores, labels, conf_thres, | |
| iou_thres) | |
| elif MINOR == 6: | |
| indices = cv2.dnn.NMSBoxes(boxes, scores, conf_thres, iou_thres) | |
| else: | |
| indices = cv2.dnn.NMSBoxes(boxes, scores, conf_thres, | |
| iou_thres).flatten() | |
| nmsd_boxes = [] | |
| nmsd_scores = [] | |
| nmsd_labels = [] | |
| for idx in indices: | |
| box = boxes[idx] | |
| # x0y0wh -> x0y0x1y1 | |
| box[2:] = box[:2] + box[2:] | |
| score = scores[idx] | |
| label = labels[idx] | |
| nmsd_boxes.append(box) | |
| nmsd_scores.append(score) | |
| nmsd_labels.append(label) | |
| return nmsd_boxes, nmsd_scores, nmsd_labels | |