Spaces:
Build error
Build error
Delete gradio_app.py
Browse files- gradio_app.py +0 -372
gradio_app.py
DELETED
@@ -1,372 +0,0 @@
|
|
1 |
-
# -*- coding: utf-8 -*-
|
2 |
-
import os
|
3 |
-
import time
|
4 |
-
from collections import OrderedDict
|
5 |
-
from PIL import Image
|
6 |
-
import torch
|
7 |
-
import trimesh
|
8 |
-
from typing import Optional, List
|
9 |
-
from einops import repeat, rearrange
|
10 |
-
import numpy as np
|
11 |
-
from michelangelo.models.tsal.tsal_base import Latent2MeshOutput
|
12 |
-
from michelangelo.utils.misc import get_config_from_file, instantiate_from_config
|
13 |
-
from michelangelo.utils.visualizers.pythreejs_viewer import PyThreeJSViewer
|
14 |
-
from michelangelo.utils.visualizers import html_util
|
15 |
-
|
16 |
-
import gradio as gr
|
17 |
-
|
18 |
-
|
19 |
-
gradio_cached_dir = "./gradio_cached_dir"
|
20 |
-
os.makedirs(gradio_cached_dir, exist_ok=True)
|
21 |
-
|
22 |
-
save_mesh = False
|
23 |
-
|
24 |
-
state = ""
|
25 |
-
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
26 |
-
|
27 |
-
box_v = 1.1
|
28 |
-
viewer = PyThreeJSViewer(settings={}, render_mode="WEBSITE")
|
29 |
-
|
30 |
-
image_model_config_dict = OrderedDict({
|
31 |
-
"ASLDM-256-obj": {
|
32 |
-
"config": "./configs/image_cond_diffuser_asl/image-ASLDM-256.yaml",
|
33 |
-
"ckpt_path": "./checkpoints/image_cond_diffuser_asl/image-ASLDM-256.ckpt",
|
34 |
-
},
|
35 |
-
})
|
36 |
-
|
37 |
-
text_model_config_dict = OrderedDict({
|
38 |
-
"ASLDM-256": {
|
39 |
-
"config": "./configs/text_cond_diffuser_asl/text-ASLDM-256.yaml",
|
40 |
-
"ckpt_path": "./checkpoints/text_cond_diffuser_asl/text-ASLDM-256.ckpt",
|
41 |
-
},
|
42 |
-
})
|
43 |
-
|
44 |
-
|
45 |
-
class InferenceModel(object):
|
46 |
-
model = None
|
47 |
-
name = ""
|
48 |
-
|
49 |
-
|
50 |
-
text2mesh_model = InferenceModel()
|
51 |
-
image2mesh_model = InferenceModel()
|
52 |
-
|
53 |
-
|
54 |
-
def set_state(s):
|
55 |
-
global state
|
56 |
-
state = s
|
57 |
-
print(s)
|
58 |
-
|
59 |
-
|
60 |
-
def output_to_html_frame(mesh_outputs: List[Latent2MeshOutput], bbox_size: float,
|
61 |
-
image: Optional[np.ndarray] = None,
|
62 |
-
html_frame: bool = False):
|
63 |
-
global viewer
|
64 |
-
|
65 |
-
for i in range(len(mesh_outputs)):
|
66 |
-
mesh = mesh_outputs[i]
|
67 |
-
if mesh is None:
|
68 |
-
continue
|
69 |
-
|
70 |
-
mesh_v = mesh.mesh_v.copy()
|
71 |
-
mesh_v[:, 0] += i * np.max(bbox_size)
|
72 |
-
mesh_v[:, 2] += np.max(bbox_size)
|
73 |
-
viewer.add_mesh(mesh_v, mesh.mesh_f)
|
74 |
-
|
75 |
-
mesh_tag = viewer.to_html(html_frame=False)
|
76 |
-
|
77 |
-
if image is not None:
|
78 |
-
image_tag = html_util.to_image_embed_tag(image)
|
79 |
-
frame = f"""
|
80 |
-
<table border = "1">
|
81 |
-
<tr>
|
82 |
-
<td>{image_tag}</td>
|
83 |
-
<td>{mesh_tag}</td>
|
84 |
-
</tr>
|
85 |
-
</table>
|
86 |
-
"""
|
87 |
-
else:
|
88 |
-
frame = mesh_tag
|
89 |
-
|
90 |
-
if html_frame:
|
91 |
-
frame = html_util.to_html_frame(frame)
|
92 |
-
|
93 |
-
viewer.reset()
|
94 |
-
|
95 |
-
return frame
|
96 |
-
|
97 |
-
|
98 |
-
def load_model(model_name: str, model_config_dict: dict, inference_model: InferenceModel):
|
99 |
-
global device
|
100 |
-
|
101 |
-
if inference_model.name == model_name:
|
102 |
-
model = inference_model.model
|
103 |
-
else:
|
104 |
-
assert model_name in model_config_dict
|
105 |
-
|
106 |
-
if inference_model.model is not None:
|
107 |
-
del inference_model.model
|
108 |
-
|
109 |
-
config_ckpt_path = model_config_dict[model_name]
|
110 |
-
|
111 |
-
model_config = get_config_from_file(config_ckpt_path["config"])
|
112 |
-
if hasattr(model_config, "model"):
|
113 |
-
model_config = model_config.model
|
114 |
-
|
115 |
-
model = instantiate_from_config(model_config, ckpt_path=config_ckpt_path["ckpt_path"])
|
116 |
-
model = model.to(device)
|
117 |
-
model = model.eval()
|
118 |
-
|
119 |
-
inference_model.model = model
|
120 |
-
inference_model.name = model_name
|
121 |
-
|
122 |
-
return model
|
123 |
-
|
124 |
-
|
125 |
-
def prepare_img(image: np.ndarray):
|
126 |
-
image_pt = torch.tensor(image).float()
|
127 |
-
image_pt = image_pt / 255 * 2 - 1
|
128 |
-
image_pt = rearrange(image_pt, "h w c -> c h w")
|
129 |
-
|
130 |
-
return image_pt
|
131 |
-
|
132 |
-
def prepare_model_viewer(fp):
|
133 |
-
content = f"""
|
134 |
-
<head>
|
135 |
-
<script
|
136 |
-
type="module" src="https://ajax.googleapis.com/ajax/libs/model-viewer/3.1.1/model-viewer.min.js">
|
137 |
-
</script>
|
138 |
-
</head>
|
139 |
-
<body>
|
140 |
-
<model-viewer
|
141 |
-
style="height: 150px; width: 150px;"
|
142 |
-
rotation-per-second="10deg"
|
143 |
-
id="t1"
|
144 |
-
src="file/gradio_cached_dir/{fp}"
|
145 |
-
environment-image="neutral"
|
146 |
-
camera-target="0m 0m 0m"
|
147 |
-
orientation="0deg 90deg 170deg"
|
148 |
-
shadow-intensity="1"
|
149 |
-
ar:true
|
150 |
-
auto-rotate
|
151 |
-
camera-controls>
|
152 |
-
</model-viewer>
|
153 |
-
</body>
|
154 |
-
"""
|
155 |
-
return content
|
156 |
-
|
157 |
-
def prepare_html_frame(content):
|
158 |
-
frame = f"""
|
159 |
-
<html>
|
160 |
-
<body>
|
161 |
-
{content}
|
162 |
-
</body>
|
163 |
-
</html>
|
164 |
-
"""
|
165 |
-
return frame
|
166 |
-
|
167 |
-
def prepare_html_body(content):
|
168 |
-
frame = f"""
|
169 |
-
<body>
|
170 |
-
{content}
|
171 |
-
</body>
|
172 |
-
"""
|
173 |
-
return frame
|
174 |
-
|
175 |
-
def post_process_mesh_outputs(mesh_outputs):
|
176 |
-
# html_frame = output_to_html_frame(mesh_outputs, 2 * box_v, image=None, html_frame=True)
|
177 |
-
html_content = output_to_html_frame(mesh_outputs, 2 * box_v, image=None, html_frame=False)
|
178 |
-
html_frame = prepare_html_frame(html_content)
|
179 |
-
|
180 |
-
# filename = f"{time.time()}.html"
|
181 |
-
filename = f"text-256-{time.time()}.html"
|
182 |
-
html_filepath = os.path.join(gradio_cached_dir, filename)
|
183 |
-
with open(html_filepath, "w") as writer:
|
184 |
-
writer.write(html_frame)
|
185 |
-
|
186 |
-
'''
|
187 |
-
Bug: The iframe tag does not work in Gradio.
|
188 |
-
The chrome returns "No resource with given URL found"
|
189 |
-
Solutions:
|
190 |
-
https://github.com/gradio-app/gradio/issues/884
|
191 |
-
Due to the security bitches, the server can only find files parallel to the gradio_app.py.
|
192 |
-
The path has format "file/TARGET_FILE_PATH"
|
193 |
-
'''
|
194 |
-
|
195 |
-
iframe_tag = f'<iframe src="file/gradio_cached_dir/{filename}" width="600%" height="400" frameborder="0"></iframe>'
|
196 |
-
|
197 |
-
filelist = []
|
198 |
-
filenames = []
|
199 |
-
for i, mesh in enumerate(mesh_outputs):
|
200 |
-
mesh.mesh_f = mesh.mesh_f[:, ::-1]
|
201 |
-
mesh_output = trimesh.Trimesh(mesh.mesh_v, mesh.mesh_f)
|
202 |
-
|
203 |
-
name = str(i) + "_out_mesh.obj"
|
204 |
-
filepath = gradio_cached_dir + "/" + name
|
205 |
-
mesh_output.export(filepath, include_normals=True)
|
206 |
-
filelist.append(filepath)
|
207 |
-
filenames.append(name)
|
208 |
-
|
209 |
-
filelist.append(html_filepath)
|
210 |
-
return iframe_tag, filelist
|
211 |
-
|
212 |
-
def image2mesh(image: np.ndarray,
|
213 |
-
model_name: str = "subsp+pk_asl_perceiver=01_01_udt=03",
|
214 |
-
num_samples: int = 4,
|
215 |
-
guidance_scale: int = 7.5,
|
216 |
-
octree_depth: int = 7):
|
217 |
-
global device, gradio_cached_dir, image_model_config_dict, box_v
|
218 |
-
|
219 |
-
# load model
|
220 |
-
model = load_model(model_name, image_model_config_dict, image2mesh_model)
|
221 |
-
|
222 |
-
# prepare image inputs
|
223 |
-
image_pt = prepare_img(image)
|
224 |
-
image_pt = repeat(image_pt, "c h w -> b c h w", b=num_samples)
|
225 |
-
|
226 |
-
sample_inputs = {
|
227 |
-
"image": image_pt
|
228 |
-
}
|
229 |
-
mesh_outputs = model.sample(
|
230 |
-
sample_inputs,
|
231 |
-
sample_times=1,
|
232 |
-
guidance_scale=guidance_scale,
|
233 |
-
return_intermediates=False,
|
234 |
-
bounds=[-box_v, -box_v, -box_v, box_v, box_v, box_v],
|
235 |
-
octree_depth=octree_depth,
|
236 |
-
)[0]
|
237 |
-
|
238 |
-
iframe_tag, filelist = post_process_mesh_outputs(mesh_outputs)
|
239 |
-
|
240 |
-
return iframe_tag, gr.update(value=filelist, visible=True)
|
241 |
-
|
242 |
-
|
243 |
-
def text2mesh(text: str,
|
244 |
-
model_name: str = "subsp+pk_asl_perceiver=01_01_udt=03",
|
245 |
-
num_samples: int = 4,
|
246 |
-
guidance_scale: int = 7.5,
|
247 |
-
octree_depth: int = 7):
|
248 |
-
global device, gradio_cached_dir, text_model_config_dict, text2mesh_model, box_v
|
249 |
-
|
250 |
-
# load model
|
251 |
-
model = load_model(model_name, text_model_config_dict, text2mesh_model)
|
252 |
-
|
253 |
-
# prepare text inputs
|
254 |
-
sample_inputs = {
|
255 |
-
"text": [text] * num_samples
|
256 |
-
}
|
257 |
-
mesh_outputs = model.sample(
|
258 |
-
sample_inputs,
|
259 |
-
sample_times=1,
|
260 |
-
guidance_scale=guidance_scale,
|
261 |
-
return_intermediates=False,
|
262 |
-
bounds=[-box_v, -box_v, -box_v, box_v, box_v, box_v],
|
263 |
-
octree_depth=octree_depth,
|
264 |
-
)[0]
|
265 |
-
|
266 |
-
iframe_tag, filelist = post_process_mesh_outputs(mesh_outputs)
|
267 |
-
|
268 |
-
return iframe_tag, gr.update(value=filelist, visible=True)
|
269 |
-
|
270 |
-
example_dir = './gradio_cached_dir/example/img_example'
|
271 |
-
|
272 |
-
first_page_items = [
|
273 |
-
'alita.jpg',
|
274 |
-
'burger.jpg'
|
275 |
-
'loopy.jpg'
|
276 |
-
'building.jpg',
|
277 |
-
'mario.jpg',
|
278 |
-
'car.jpg',
|
279 |
-
'airplane.jpg',
|
280 |
-
'bag.jpg',
|
281 |
-
'bench.jpg',
|
282 |
-
'ship.jpg'
|
283 |
-
]
|
284 |
-
raw_example_items = [
|
285 |
-
# (os.path.join(example_dir, x), x)
|
286 |
-
os.path.join(example_dir, x)
|
287 |
-
for x in os.listdir(example_dir)
|
288 |
-
if x.endswith(('.jpg', '.png'))
|
289 |
-
]
|
290 |
-
example_items = [x for x in raw_example_items if os.path.basename(x) in first_page_items] + [x for x in raw_example_items if os.path.basename(x) not in first_page_items]
|
291 |
-
|
292 |
-
example_text = [
|
293 |
-
["A 3D model of a car; Audi A6."],
|
294 |
-
["A 3D model of police car; Highway Patrol Charger"]
|
295 |
-
],
|
296 |
-
|
297 |
-
def set_cache(data: gr.SelectData):
|
298 |
-
img_name = os.path.basename(example_items[data.index])
|
299 |
-
return os.path.join(example_dir, img_name), os.path.join(img_name)
|
300 |
-
|
301 |
-
def disable_cache():
|
302 |
-
return ""
|
303 |
-
|
304 |
-
with gr.Blocks() as app:
|
305 |
-
gr.Markdown("# Michelangelo")
|
306 |
-
gr.Markdown("## [Github](https://github.com/NeuralCarver/Michelangelo) | [Arxiv](https://arxiv.org/abs/2306.17115) | [Project Page](https://neuralcarver.github.io/michelangelo/)")
|
307 |
-
gr.Markdown("Michelangelo is a conditional 3D shape generation system that trains based on the shape-image-text aligned latent representation.")
|
308 |
-
gr.Markdown("### Hint:")
|
309 |
-
gr.Markdown("1. We provide two APIs: Image-conditioned generation and Text-conditioned generation")
|
310 |
-
gr.Markdown("2. Note that the Image-conditioned model is trained on multiple 3D datasets like ShapeNet and Objaverse")
|
311 |
-
gr.Markdown("3. We provide some examples for you to try. You can also upload images or text as input.")
|
312 |
-
gr.Markdown("4. Welcome to share your amazing results with us, and thanks for your interest in our work!")
|
313 |
-
|
314 |
-
with gr.Row():
|
315 |
-
with gr.Column():
|
316 |
-
|
317 |
-
with gr.Tab("Image to 3D"):
|
318 |
-
img = gr.Image(label="Image")
|
319 |
-
gr.Markdown("For the best results, we suggest that the images uploaded meet the following three criteria: 1. The object is positioned at the center of the image, 2. The image size is square, and 3. The background is relatively clean.")
|
320 |
-
btn_generate_img2obj = gr.Button(value="Generate")
|
321 |
-
|
322 |
-
with gr.Accordion("Advanced settings", open=False):
|
323 |
-
image_dropdown_models = gr.Dropdown(label="Model", value="ASLDM-256-obj",choices=list(image_model_config_dict.keys()))
|
324 |
-
num_samples = gr.Slider(label="samples", value=4, minimum=1, maximum=8, step=1)
|
325 |
-
guidance_scale = gr.Slider(label="Guidance scale", value=7.5, minimum=3.0, maximum=10.0, step=0.1)
|
326 |
-
octree_depth = gr.Slider(label="Octree Depth (for 3D model)", value=7, minimum=4, maximum=8, step=1)
|
327 |
-
|
328 |
-
|
329 |
-
cache_dir = gr.Textbox(value="", visible=False)
|
330 |
-
examples = gr.Gallery(label='Examples', value=example_items, elem_id="gallery", allow_preview=False, columns=[4], object_fit="contain")
|
331 |
-
|
332 |
-
with gr.Tab("Text to 3D"):
|
333 |
-
prompt = gr.Textbox(label="Prompt", placeholder="A 3D model of motorcar; Porche Cayenne Turbo.")
|
334 |
-
gr.Markdown("For the best results, we suggest that the prompt follows 'A 3D model of CATEGORY; DESCRIPTION'. For example, A 3D model of motorcar; Porche Cayenne Turbo.")
|
335 |
-
btn_generate_txt2obj = gr.Button(value="Generate")
|
336 |
-
|
337 |
-
with gr.Accordion("Advanced settings", open=False):
|
338 |
-
text_dropdown_models = gr.Dropdown(label="Model", value="ASLDM-256",choices=list(text_model_config_dict.keys()))
|
339 |
-
num_samples = gr.Slider(label="samples", value=4, minimum=1, maximum=8, step=1)
|
340 |
-
guidance_scale = gr.Slider(label="Guidance scale", value=7.5, minimum=3.0, maximum=10.0, step=0.1)
|
341 |
-
octree_depth = gr.Slider(label="Octree Depth (for 3D model)", value=7, minimum=4, maximum=8, step=1)
|
342 |
-
|
343 |
-
gr.Markdown("#### Examples:")
|
344 |
-
gr.Markdown("1. A 3D model of a coupe; Audi A6.")
|
345 |
-
gr.Markdown("2. A 3D model of a motorcar; Hummer H2 SUT.")
|
346 |
-
gr.Markdown("3. A 3D model of an airplane; Airbus.")
|
347 |
-
gr.Markdown("4. A 3D model of a fighter aircraft; Attack Fighter.")
|
348 |
-
gr.Markdown("5. A 3D model of a chair; Simple Wooden Chair.")
|
349 |
-
gr.Markdown("6. A 3D model of a laptop computer; Dell Laptop.")
|
350 |
-
gr.Markdown("7. A 3D model of a lamp; ceiling light.")
|
351 |
-
gr.Markdown("8. A 3D model of a rifle; AK47.")
|
352 |
-
gr.Markdown("9. A 3D model of a knife; Sword.")
|
353 |
-
gr.Markdown("10. A 3D model of a vase; Plant in pot.")
|
354 |
-
|
355 |
-
with gr.Column():
|
356 |
-
model_3d = gr.HTML()
|
357 |
-
file_out = gr.File(label="Files", visible=False)
|
358 |
-
|
359 |
-
outputs = [model_3d, file_out]
|
360 |
-
|
361 |
-
img.upload(disable_cache, outputs=cache_dir)
|
362 |
-
examples.select(set_cache, outputs=[img, cache_dir])
|
363 |
-
print(f'line:404: {cache_dir}')
|
364 |
-
btn_generate_img2obj.click(image2mesh, inputs=[img, image_dropdown_models, num_samples,
|
365 |
-
guidance_scale, octree_depth],
|
366 |
-
outputs=outputs, api_name="generate_img2obj")
|
367 |
-
|
368 |
-
btn_generate_txt2obj.click(text2mesh, inputs=[prompt, text_dropdown_models, num_samples,
|
369 |
-
guidance_scale, octree_depth],
|
370 |
-
outputs=outputs, api_name="generate_txt2obj")
|
371 |
-
|
372 |
-
app.launch(server_name="0.0.0.0", server_port=8008, share=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|