Spaces:
Runtime error
Runtime error
Delete michelangelo/models/tsal/sal_transformer.py
Browse files
michelangelo/models/tsal/sal_transformer.py
DELETED
@@ -1,286 +0,0 @@
|
|
1 |
-
# -*- coding: utf-8 -*-
|
2 |
-
|
3 |
-
import torch
|
4 |
-
import torch.nn as nn
|
5 |
-
from torch_cluster import fps
|
6 |
-
from typing import Optional
|
7 |
-
import math
|
8 |
-
|
9 |
-
from michelangelo.models.modules import checkpoint
|
10 |
-
from michelangelo.models.modules.embedder import FourierEmbedder
|
11 |
-
from michelangelo.models.modules.distributions import DiagonalGaussianDistribution
|
12 |
-
from michelangelo.models.modules.transformer_blocks import (
|
13 |
-
ResidualCrossAttentionBlock,
|
14 |
-
Transformer
|
15 |
-
)
|
16 |
-
|
17 |
-
from .tsal_base import ShapeAsLatentModule
|
18 |
-
|
19 |
-
|
20 |
-
class CrossAttentionEncoder(nn.Module):
|
21 |
-
|
22 |
-
def __init__(self, *,
|
23 |
-
device: Optional[torch.device],
|
24 |
-
dtype: Optional[torch.dtype],
|
25 |
-
num_latents: int,
|
26 |
-
fourier_embedder: FourierEmbedder,
|
27 |
-
point_feats: int,
|
28 |
-
width: int,
|
29 |
-
heads: int,
|
30 |
-
init_scale: float = 0.25,
|
31 |
-
qkv_bias: bool = True,
|
32 |
-
use_ln_post: bool = False,
|
33 |
-
use_checkpoint: bool = False):
|
34 |
-
|
35 |
-
super().__init__()
|
36 |
-
|
37 |
-
self.use_checkpoint = use_checkpoint
|
38 |
-
self.num_latents = num_latents
|
39 |
-
self.fourier_embedder = fourier_embedder
|
40 |
-
|
41 |
-
self.input_proj = nn.Linear(self.fourier_embedder.out_dim + point_feats, width, device=device, dtype=dtype)
|
42 |
-
self.cross_attn_encoder = ResidualCrossAttentionBlock(
|
43 |
-
device=device,
|
44 |
-
dtype=dtype,
|
45 |
-
width=width,
|
46 |
-
heads=heads,
|
47 |
-
init_scale=init_scale,
|
48 |
-
qkv_bias=qkv_bias
|
49 |
-
)
|
50 |
-
if use_ln_post:
|
51 |
-
self.ln_post = nn.LayerNorm(width, dtype=dtype, device=device)
|
52 |
-
else:
|
53 |
-
self.ln_post = None
|
54 |
-
|
55 |
-
def _forward(self, pc, feats):
|
56 |
-
"""
|
57 |
-
|
58 |
-
Args:
|
59 |
-
pc (torch.FloatTensor): [B, N, 3]
|
60 |
-
feats (torch.FloatTensor or None): [B, N, C]
|
61 |
-
|
62 |
-
Returns:
|
63 |
-
|
64 |
-
"""
|
65 |
-
|
66 |
-
B, N, _ = pc.shape
|
67 |
-
batch = torch.arange(B).to(pc.device)
|
68 |
-
batch = torch.repeat_interleave(batch, N)
|
69 |
-
|
70 |
-
data = self.fourier_embedder(pc)
|
71 |
-
if feats is not None:
|
72 |
-
data = torch.cat([data, feats], dim=-1)
|
73 |
-
data = self.input_proj(data)
|
74 |
-
|
75 |
-
ratio = self.num_latents / N
|
76 |
-
flatten_pos = pc.view(B * N, -1) # [B * N, 3]
|
77 |
-
flatten_data = data.view(B * N, -1) # [B * N, C]
|
78 |
-
idx = fps(flatten_pos, batch, ratio=ratio)
|
79 |
-
center_pos = flatten_pos[idx].view(B, self.num_latents, -1)
|
80 |
-
query = flatten_data[idx].view(B, self. num_latents, -1)
|
81 |
-
|
82 |
-
latents = self.cross_attn_encoder(query, data)
|
83 |
-
|
84 |
-
if self.ln_post is not None:
|
85 |
-
latents = self.ln_post(latents)
|
86 |
-
|
87 |
-
return latents, center_pos
|
88 |
-
|
89 |
-
def forward(self, pc: torch.FloatTensor, feats: Optional[torch.FloatTensor] = None):
|
90 |
-
"""
|
91 |
-
|
92 |
-
Args:
|
93 |
-
pc (torch.FloatTensor): [B, N, 3]
|
94 |
-
feats (torch.FloatTensor or None): [B, N, C]
|
95 |
-
|
96 |
-
Returns:
|
97 |
-
dict
|
98 |
-
"""
|
99 |
-
|
100 |
-
return checkpoint(self._forward, (pc, feats), self.parameters(), self.use_checkpoint)
|
101 |
-
|
102 |
-
|
103 |
-
class CrossAttentionDecoder(nn.Module):
|
104 |
-
|
105 |
-
def __init__(self, *,
|
106 |
-
device: Optional[torch.device],
|
107 |
-
dtype: Optional[torch.dtype],
|
108 |
-
num_latents: int,
|
109 |
-
out_channels: int,
|
110 |
-
fourier_embedder: FourierEmbedder,
|
111 |
-
width: int,
|
112 |
-
heads: int,
|
113 |
-
init_scale: float = 0.25,
|
114 |
-
qkv_bias: bool = True,
|
115 |
-
use_checkpoint: bool = False):
|
116 |
-
|
117 |
-
super().__init__()
|
118 |
-
|
119 |
-
self.use_checkpoint = use_checkpoint
|
120 |
-
self.fourier_embedder = fourier_embedder
|
121 |
-
|
122 |
-
self.query_proj = nn.Linear(self.fourier_embedder.out_dim, width, device=device, dtype=dtype)
|
123 |
-
|
124 |
-
self.cross_attn_decoder = ResidualCrossAttentionBlock(
|
125 |
-
device=device,
|
126 |
-
dtype=dtype,
|
127 |
-
n_data=num_latents,
|
128 |
-
width=width,
|
129 |
-
heads=heads,
|
130 |
-
init_scale=init_scale,
|
131 |
-
qkv_bias=qkv_bias
|
132 |
-
)
|
133 |
-
|
134 |
-
self.ln_post = nn.LayerNorm(width, device=device, dtype=dtype)
|
135 |
-
self.output_proj = nn.Linear(width, out_channels, device=device, dtype=dtype)
|
136 |
-
|
137 |
-
def _forward(self, queries: torch.FloatTensor, latents: torch.FloatTensor):
|
138 |
-
queries = self.query_proj(self.fourier_embedder(queries))
|
139 |
-
x = self.cross_attn_decoder(queries, latents)
|
140 |
-
x = self.ln_post(x)
|
141 |
-
x = self.output_proj(x)
|
142 |
-
return x
|
143 |
-
|
144 |
-
def forward(self, queries: torch.FloatTensor, latents: torch.FloatTensor):
|
145 |
-
return checkpoint(self._forward, (queries, latents), self.parameters(), self.use_checkpoint)
|
146 |
-
|
147 |
-
|
148 |
-
class ShapeAsLatentTransformer(ShapeAsLatentModule):
|
149 |
-
def __init__(self, *,
|
150 |
-
device: Optional[torch.device],
|
151 |
-
dtype: Optional[torch.dtype],
|
152 |
-
num_latents: int,
|
153 |
-
point_feats: int = 0,
|
154 |
-
embed_dim: int = 0,
|
155 |
-
num_freqs: int = 8,
|
156 |
-
include_pi: bool = True,
|
157 |
-
width: int,
|
158 |
-
layers: int,
|
159 |
-
heads: int,
|
160 |
-
init_scale: float = 0.25,
|
161 |
-
qkv_bias: bool = True,
|
162 |
-
use_ln_post: bool = False,
|
163 |
-
use_checkpoint: bool = False):
|
164 |
-
|
165 |
-
super().__init__()
|
166 |
-
|
167 |
-
self.use_checkpoint = use_checkpoint
|
168 |
-
|
169 |
-
self.num_latents = num_latents
|
170 |
-
self.fourier_embedder = FourierEmbedder(num_freqs=num_freqs, include_pi=include_pi)
|
171 |
-
|
172 |
-
init_scale = init_scale * math.sqrt(1.0 / width)
|
173 |
-
self.encoder = CrossAttentionEncoder(
|
174 |
-
device=device,
|
175 |
-
dtype=dtype,
|
176 |
-
fourier_embedder=self.fourier_embedder,
|
177 |
-
num_latents=num_latents,
|
178 |
-
point_feats=point_feats,
|
179 |
-
width=width,
|
180 |
-
heads=heads,
|
181 |
-
init_scale=init_scale,
|
182 |
-
qkv_bias=qkv_bias,
|
183 |
-
use_ln_post=use_ln_post,
|
184 |
-
use_checkpoint=use_checkpoint
|
185 |
-
)
|
186 |
-
|
187 |
-
self.embed_dim = embed_dim
|
188 |
-
if embed_dim > 0:
|
189 |
-
# VAE embed
|
190 |
-
self.pre_kl = nn.Linear(width, embed_dim * 2, device=device, dtype=dtype)
|
191 |
-
self.post_kl = nn.Linear(embed_dim, width, device=device, dtype=dtype)
|
192 |
-
self.latent_shape = (num_latents, embed_dim)
|
193 |
-
else:
|
194 |
-
self.latent_shape = (num_latents, width)
|
195 |
-
|
196 |
-
self.transformer = Transformer(
|
197 |
-
device=device,
|
198 |
-
dtype=dtype,
|
199 |
-
n_ctx=num_latents,
|
200 |
-
width=width,
|
201 |
-
layers=layers,
|
202 |
-
heads=heads,
|
203 |
-
init_scale=init_scale,
|
204 |
-
qkv_bias=qkv_bias,
|
205 |
-
use_checkpoint=use_checkpoint
|
206 |
-
)
|
207 |
-
|
208 |
-
# geometry decoder
|
209 |
-
self.geo_decoder = CrossAttentionDecoder(
|
210 |
-
device=device,
|
211 |
-
dtype=dtype,
|
212 |
-
fourier_embedder=self.fourier_embedder,
|
213 |
-
out_channels=1,
|
214 |
-
num_latents=num_latents,
|
215 |
-
width=width,
|
216 |
-
heads=heads,
|
217 |
-
init_scale=init_scale,
|
218 |
-
qkv_bias=qkv_bias,
|
219 |
-
use_checkpoint=use_checkpoint
|
220 |
-
)
|
221 |
-
|
222 |
-
def encode(self,
|
223 |
-
pc: torch.FloatTensor,
|
224 |
-
feats: Optional[torch.FloatTensor] = None,
|
225 |
-
sample_posterior: bool = True):
|
226 |
-
"""
|
227 |
-
|
228 |
-
Args:
|
229 |
-
pc (torch.FloatTensor): [B, N, 3]
|
230 |
-
feats (torch.FloatTensor or None): [B, N, C]
|
231 |
-
sample_posterior (bool):
|
232 |
-
|
233 |
-
Returns:
|
234 |
-
latents (torch.FloatTensor)
|
235 |
-
center_pos (torch.FloatTensor):
|
236 |
-
posterior (DiagonalGaussianDistribution or None):
|
237 |
-
"""
|
238 |
-
|
239 |
-
latents, center_pos = self.encoder(pc, feats)
|
240 |
-
|
241 |
-
posterior = None
|
242 |
-
if self.embed_dim > 0:
|
243 |
-
moments = self.pre_kl(latents)
|
244 |
-
posterior = DiagonalGaussianDistribution(moments, feat_dim=-1)
|
245 |
-
|
246 |
-
if sample_posterior:
|
247 |
-
latents = posterior.sample()
|
248 |
-
else:
|
249 |
-
latents = posterior.mode()
|
250 |
-
|
251 |
-
return latents, center_pos, posterior
|
252 |
-
|
253 |
-
def decode(self, latents: torch.FloatTensor):
|
254 |
-
latents = self.post_kl(latents)
|
255 |
-
return self.transformer(latents)
|
256 |
-
|
257 |
-
def query_geometry(self, queries: torch.FloatTensor, latents: torch.FloatTensor):
|
258 |
-
logits = self.geo_decoder(queries, latents).squeeze(-1)
|
259 |
-
return logits
|
260 |
-
|
261 |
-
def forward(self,
|
262 |
-
pc: torch.FloatTensor,
|
263 |
-
feats: torch.FloatTensor,
|
264 |
-
volume_queries: torch.FloatTensor,
|
265 |
-
sample_posterior: bool = True):
|
266 |
-
"""
|
267 |
-
|
268 |
-
Args:
|
269 |
-
pc (torch.FloatTensor): [B, N, 3]
|
270 |
-
feats (torch.FloatTensor or None): [B, N, C]
|
271 |
-
volume_queries (torch.FloatTensor): [B, P, 3]
|
272 |
-
sample_posterior (bool):
|
273 |
-
|
274 |
-
Returns:
|
275 |
-
logits (torch.FloatTensor): [B, P]
|
276 |
-
center_pos (torch.FloatTensor): [B, M, 3]
|
277 |
-
posterior (DiagonalGaussianDistribution or None).
|
278 |
-
|
279 |
-
"""
|
280 |
-
|
281 |
-
latents, center_pos, posterior = self.encode(pc, feats, sample_posterior=sample_posterior)
|
282 |
-
|
283 |
-
latents = self.decode(latents)
|
284 |
-
logits = self.query_geometry(volume_queries, latents)
|
285 |
-
|
286 |
-
return logits, center_pos, posterior
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|