Spaces:
Runtime error
Runtime error
| import pandas as pd | |
| import numpy as np | |
| import matplotlib.pyplot as plt | |
| import warnings | |
| warnings.filterwarnings('ignore') | |
| # Checking directory | |
| import os | |
| # 获取当前文件的绝对路径 | |
| current_file_path = os.path.abspath(__file__) | |
| # 获取当前文件所在目录 | |
| current_directory = os.path.dirname(current_file_path) | |
| # 设置为工作路径 | |
| os.chdir(current_directory) | |
| import streamlit as st | |
| st.title('Huayra- Restaurant Comment app') | |
| st.title("Introduction about the Dataset") | |
| st.write("A dataset of restaurant reviews with 10000 rows and 8 columns.") | |
| st.write("The dataset has 10000 rows and 8 columns.") | |
| st.write("Try to perform NLP by using the 'Review' and 'Rating' columns.") | |
| st.write("Try sentiment analysis by considering rating above 3 as 'Positive' and below 3 as 'Negative'.") | |
| st.write("Source: https://github.com/manthanpatel98/Restaurant-Review-Sentiment-Analysis/tree/master") | |
| # 读取数据 | |
| df=pd.read_csv("data.csv") | |
| # 创建图表 | |
| fig, ax = plt.subplots(figsize=(6, 4)) | |
| df['Rating'].hist(bins=50, ax=ax) | |
| # 添加标题 | |
| ax.set_title('Histogram of Rating') | |
| # 添加 X 轴标签 | |
| ax.set_xlabel('Rating') | |
| # 添加 Y 轴标签 | |
| ax.set_ylabel('Frequency') | |
| # 在 streamlit 中显示图表 | |
| st.pyplot(fig) | |
| # 执行数据处理步骤 | |
| data = df.copy() | |
| df = df[['Review', 'Rating']].copy() | |
| df = df.rename(columns={'Review': 'text', 'Rating': 'label'}) | |
| st.title('Data Overview') | |
| # 在 streamlit 中展示表格 | |
| st.dataframe(df) | |
| st.title('Table Selection') | |
| # 选择标签的下拉列表 | |
| selected_label = st.selectbox('Choose label', df['label'].unique()) | |
| # 根据选择的标签过滤数据并显示表格 | |
| filtered_df = df[df['label'] == selected_label] | |
| st.table(filtered_df.head(3)) | |
| # This function returns sentiment value based on: | |
| # label <= 3.0 -> Negative | |
| # label > 3.0 -> Positive | |
| df=pd.read_csv("label.csv") | |
| st.title("Wordcloud") | |
| image_path = "wordclouds.png" | |
| st.image(image_path) | |
| result=pd.read_csv("result.csv") | |
| st.write("The prediction result of the classifiers are as follows:") | |
| st.table(result) | |
| st.title("LDA Analysis") | |
| st.write("The visualization of the theme of the positive reviews") | |
| image_path = "lda_positive.png" | |
| st.image(image_path) | |
| st.write("Hierarchical Clustering of the positive reviews") | |
| image_path = "hc_positive.png" | |
| st.image(image_path) | |
| st.write("Similarity Matrix of the positive reviews") | |
| image_path = "similarity_positive.png" | |
| st.image(image_path) | |
| st.write("The visualization of the theme of the negative reviews") | |
| image_path = "lda_negative.png" | |
| st.image(image_path) | |
| st.write("Hierarchical Clustering of the negative reviews") | |
| image_path = "hc_negative.png" | |
| st.image(image_path) | |
| st.write("Similarity Matrix of the negative reviews") | |
| image_path = "similarity_negative.png" | |
| st.image(image_path) | |