Spaces:
Configuration error
Configuration error
import os | |
import numpy as np | |
import matplotlib.pyplot as plt | |
import matplotlib.animation as animation | |
import matplotlib.ticker as mticker | |
import cartopy.crs as ccrs | |
import cartopy.feature as cfeature | |
import cartopy.io.shapereader as shpreader | |
from .interpolation import interpolate_grid | |
from .basemaps import draw_etopo_basemap | |
# def animate_vertical_profile(animator, t_index: int, output_path: str, fps: int = 2, include_metadata: bool = True, threshold: float = 0.1): | |
# if not (0 <= t_index < len(animator.datasets)): | |
# print(f"Invalid time index {t_index}. Must be between 0 and {len(animator.datasets) - 1}.") | |
# return | |
# ds = animator.datasets[t_index] | |
# fig = plt.figure(figsize=(16, 7)) | |
# proj = ccrs.PlateCarree() | |
# ax1 = fig.add_subplot(1, 2, 1, projection=proj) | |
# ax2 = fig.add_subplot(1, 2, 2, projection=proj) | |
# meta = ds.attrs | |
# legend_text = ( | |
# f"Run name: {meta.get('run_name', 'N/A')}\n" | |
# f"Run time: {meta.get('run_time', 'N/A')}\n" | |
# f"Met data: {meta.get('met_data', 'N/A')}\n" | |
# f"Start release: {meta.get('start_of_release', 'N/A')}\n" | |
# f"End release: {meta.get('end_of_release', 'N/A')}\n" | |
# f"Source strength: {meta.get('source_strength', 'N/A')} g/s\n" | |
# f"Release loc: {meta.get('release_location', 'N/A')}\n" | |
# f"Release height: {meta.get('release_height', 'N/A')} m asl\n" | |
# f"Run duration: {meta.get('run_duration', 'N/A')}" | |
# ) | |
# valid_mask = np.stack([ds['ash_concentration'].values[z] for z in range(len(animator.levels))]).max(axis=0) > 0 | |
# y_idx, x_idx = np.where(valid_mask) | |
# if y_idx.size == 0 or x_idx.size == 0: | |
# print(f"No valid data found for time T{t_index+1}. Skipping...") | |
# plt.close() | |
# return | |
# y_min, y_max = y_idx.min(), y_idx.max() | |
# x_min, x_max = x_idx.min(), x_idx.max() | |
# buffer_y = int((y_max - y_min) * 0.1) | |
# buffer_x = int((x_max - x_min) * 0.1) | |
# y_start = max(0, y_min - buffer_y) | |
# y_end = min(animator.lat_grid.shape[0], y_max + buffer_y + 1) | |
# x_start = max(0, x_min - buffer_x) | |
# x_end = min(animator.lon_grid.shape[1], x_max + buffer_x + 1) | |
# lat_zoom = animator.lats[y_start:y_end] | |
# lon_zoom = animator.lons[x_start:x_end] | |
# lon_zoom_grid, lat_zoom_grid = np.meshgrid(lon_zoom, lat_zoom) | |
# z_indices_with_data = [] | |
# for z_index in range(len(animator.levels)): | |
# data = ds['ash_concentration'].values[z_index] | |
# interp = interpolate_grid(data, animator.lon_grid, animator.lat_grid) | |
# if np.isfinite(interp).sum() > 0: | |
# z_indices_with_data.append(z_index) | |
# if not z_indices_with_data: | |
# print(f"No valid Z-levels at time T{t_index+1}.") | |
# plt.close() | |
# return | |
# def update(z_index): | |
# ax1.clear() | |
# ax2.clear() | |
# data = ds['ash_concentration'].values[z_index] | |
# interp = interpolate_grid(data, animator.lon_grid, animator.lat_grid) | |
# interp = np.where(interp < 0, np.nan, interp) | |
# zoom_plot = interp[y_start:y_end, x_start:x_end] | |
# valid_vals = interp[np.isfinite(interp)] | |
# if valid_vals.size == 0: | |
# return [] | |
# min_val = np.nanmin(valid_vals) | |
# max_val = np.nanmax(valid_vals) | |
# log_cutoff = 1e-3 | |
# use_log = min_val > log_cutoff and (max_val / (min_val + 1e-6)) > 100 | |
# levels = np.logspace(np.log10(log_cutoff), np.log10(max_val), 20) if use_log else np.linspace(0, max_val, 20) | |
# data_for_plot = np.where(interp > log_cutoff, interp, 0) if use_log else interp | |
# scale_label = "Log" if use_log else "Linear" | |
# draw_etopo_basemap(ax1, mode='stock') | |
# draw_etopo_basemap(ax2, mode='stock') | |
# c1 = ax1.contourf(animator.lons, animator.lats, data_for_plot, levels=levels, | |
# cmap="rainbow", alpha=0.6, transform=proj) | |
# ax1.set_title(f"T{t_index+1} | Alt: {animator.levels[z_index]} km (Full - {scale_label})") | |
# ax1.set_extent([animator.lons.min(), animator.lons.max(), animator.lats.min(), animator.lats.max()]) | |
# ax1.coastlines(); ax1.add_feature(cfeature.BORDERS, linestyle=':') | |
# ax1.add_feature(cfeature.LAND); ax1.add_feature(cfeature.OCEAN) | |
# c2 = ax2.contourf(lon_zoom_grid, lat_zoom_grid, zoom_plot, levels=levels, | |
# cmap="rainbow", alpha=0.6, transform=proj) | |
# ax2.set_title(f"T{t_index+1} | Alt: {animator.levels[z_index]} km (Zoom - {scale_label})") | |
# ax2.set_extent([lon_zoom.min(), lon_zoom.max(), lat_zoom.min(), lat_zoom.max()]) | |
# ax2.coastlines(); ax2.add_feature(cfeature.BORDERS, linestyle=':') | |
# ax2.add_feature(cfeature.LAND); ax2.add_feature(cfeature.OCEAN) | |
# for ax in [ax1, ax2]: | |
# ax.text(0.01, 0.98, f"Altitude: {animator.levels[z_index]:.2f} km", transform=ax.transAxes, | |
# fontsize=9, color='white', va='top', ha='left', | |
# bbox=dict(facecolor='black', alpha=0.4, boxstyle='round')) | |
# if include_metadata: | |
# ax.text(0.01, 0.01, | |
# f"Source: NAME\nRes: {animator.x_res:.2f}°\n{meta.get('run_name', 'N/A')}", | |
# transform=ax.transAxes, fontsize=8, color='white', | |
# bbox=dict(facecolor='black', alpha=0.5)) | |
# if np.nanmax(valid_vals) > threshold: | |
# for ax in [ax1, ax2]: | |
# ax.text(0.99, 0.01, f"⚠ Exceeds {threshold} g/m³!", transform=ax.transAxes, | |
# ha='right', va='bottom', fontsize=10, color='red', | |
# bbox=dict(facecolor='white', alpha=0.8, edgecolor='red')) | |
# ax1.contour(animator.lons, animator.lats, interp, levels=[threshold], colors='red', linewidths=2, transform=proj) | |
# ax2.contour(lon_zoom_grid, lat_zoom_grid, zoom_plot, levels=[threshold], colors='red', linewidths=2, transform=proj) | |
# if include_metadata and not hasattr(update, "legend_text"): | |
# ax1.annotate(legend_text, xy=(0.75, 0.99), xycoords='axes fraction', | |
# fontsize=8, ha='left', va='top', | |
# bbox=dict(boxstyle="round", facecolor="white", edgecolor="gray")) | |
# if not hasattr(update, "colorbar"): | |
# update.colorbar = fig.colorbar(c1, ax=[ax1, ax2], orientation='vertical', | |
# label="Ash concentration (g/m³)") | |
# formatter = mticker.FuncFormatter(lambda x, _: f'{x:.2g}') | |
# update.colorbar.ax.yaxis.set_major_formatter(formatter) | |
# if use_log: | |
# update.colorbar.ax.text(1.05, 1.02, "log scale", transform=update.colorbar.ax.transAxes, | |
# fontsize=9, color='gray', rotation=90, ha='left', va='bottom') | |
# return [] | |
# os.makedirs(os.path.dirname(output_path), exist_ok=True) | |
# ani = animation.FuncAnimation(fig, update, frames=z_indices_with_data, blit=False) | |
# ani.save(output_path, writer='pillow', fps=fps) | |
# plt.close() | |
# print(f"✅ Saved vertical profile animation for T{t_index+1} to {output_path}") | |
# def animate_all_vertical_profiles(animator, output_folder: str, fps: int = 2, include_metadata: bool = True, threshold: float = 0.1): | |
# os.makedirs(output_folder, exist_ok=True) | |
# for t_index in range(len(animator.datasets)): | |
# output_path = os.path.join(output_folder, f"vertical_T{t_index+1:02d}.gif") | |
# print(f"🔄 Generating vertical profile animation for T{t_index+1}...") | |
# animate_vertical_profile(animator, t_index, output_path, fps, include_metadata, threshold) | |
import os | |
import numpy as np | |
import matplotlib.pyplot as plt | |
import matplotlib.animation as animation | |
import matplotlib.ticker as mticker | |
import cartopy.crs as ccrs | |
import cartopy.feature as cfeature | |
import cartopy.io.shapereader as shpreader | |
from .interpolation import interpolate_grid | |
from .basemaps import draw_etopo_basemap | |
from adjustText import adjust_text | |
def animate_vertical_profile(animator, t_index: int, output_path: str, fps: int = 2, | |
include_metadata: bool = True, threshold: float = 0.1, | |
zoom_width_deg: float = 6.0, zoom_height_deg: float = 6.0): | |
if not (0 <= t_index < len(animator.datasets)): | |
print(f"Invalid time index {t_index}. Must be between 0 and {len(animator.datasets) - 1}.") | |
return | |
countries_shp = shpreader.natural_earth(resolution='110m', category='cultural', name='admin_0_countries') | |
reader = shpreader.Reader(countries_shp) | |
country_geoms = list(reader.records()) | |
ds = animator.datasets[t_index] | |
fig = plt.figure(figsize=(18, 7)) # Wider for metadata outside | |
proj = ccrs.PlateCarree() | |
ax1 = fig.add_subplot(1, 2, 1, projection=proj) | |
ax2 = fig.add_subplot(1, 2, 2, projection=proj) | |
meta = ds.attrs | |
legend_text = ( | |
f"Run name: {meta.get('run_name', 'N/A')}\n" | |
f"Run time: {meta.get('run_time', 'N/A')}\n" | |
f"Met data: {meta.get('met_data', 'N/A')}\n" | |
f"Start release: {meta.get('start_of_release', 'N/A')}\n" | |
f"End release: {meta.get('end_of_release', 'N/A')}\n" | |
f"Source strength: {meta.get('source_strength', 'N/A')} g/s\n" | |
f"Release loc: {meta.get('release_location', 'N/A')}\n" | |
f"Release height: {meta.get('release_height', 'N/A')} m asl\n" | |
f"Run duration: {meta.get('run_duration', 'N/A')}" | |
) | |
# 🔍 Find most active point at this time step | |
max_conc = -np.inf | |
center_lat = center_lon = None | |
for z in range(len(animator.levels)): | |
data = ds['ash_concentration'].values[z] | |
if np.max(data) > max_conc: | |
max_conc = np.max(data) | |
max_idx = np.unravel_index(np.argmax(data), data.shape) | |
center_lat = animator.lat_grid[max_idx] | |
center_lon = animator.lon_grid[max_idx] | |
if center_lat is None or center_lon is None: | |
print(f"No valid data found for time T{t_index+1}. Skipping...") | |
plt.close() | |
return | |
# 🌍 Define fixed zoom extents | |
lon_zoom_min = center_lon - zoom_width_deg / 2 | |
lon_zoom_max = center_lon + zoom_width_deg / 2 | |
lat_zoom_min = center_lat - zoom_height_deg / 2 | |
lat_zoom_max = center_lat + zoom_height_deg / 2 | |
lat_zoom = animator.lats[(animator.lats >= lat_zoom_min) & (animator.lats <= lat_zoom_max)] | |
lon_zoom = animator.lons[(animator.lons >= lon_zoom_min) & (animator.lons <= lon_zoom_max)] | |
lon_zoom_grid, lat_zoom_grid = np.meshgrid(lon_zoom, lat_zoom) | |
z_indices_with_data = [] | |
for z_index in range(len(animator.levels)): | |
data = ds['ash_concentration'].values[z_index] | |
interp = interpolate_grid(data, animator.lon_grid, animator.lat_grid) | |
if np.isfinite(interp).sum() > 0: | |
z_indices_with_data.append(z_index) | |
if not z_indices_with_data: | |
print(f"No valid Z-levels at time T{t_index+1}.") | |
plt.close() | |
return | |
def update(z_index): | |
ax1.clear() | |
ax2.clear() | |
data = ds['ash_concentration'].values[z_index] | |
interp = interpolate_grid(data, animator.lon_grid, animator.lat_grid) | |
interp = np.where(interp < 0, np.nan, interp) | |
lat_idx = np.where((animator.lats >= lat_zoom_min) & (animator.lats <= lat_zoom_max))[0] | |
lon_idx = np.where((animator.lons >= lon_zoom_min) & (animator.lons <= lon_zoom_max))[0] | |
zoom_plot = interp[np.ix_(lat_idx, lon_idx)] | |
valid_vals = interp[np.isfinite(interp)] | |
if valid_vals.size == 0: | |
return [] | |
min_val = np.nanmin(valid_vals) | |
max_val = np.nanmax(valid_vals) | |
log_cutoff = 1e-3 | |
use_log = min_val > log_cutoff and (max_val / (min_val + 1e-6)) > 100 | |
levels = np.logspace(np.log10(log_cutoff), np.log10(max_val), 20) if use_log else np.linspace(0, max_val, 20) | |
data_for_plot = np.where(interp > log_cutoff, interp, 0) if use_log else interp | |
scale_label = "Log" if use_log else "Linear" | |
draw_etopo_basemap(ax1, mode='stock') | |
draw_etopo_basemap(ax2, mode='stock') | |
c1 = ax1.contourf(animator.lons, animator.lats, data_for_plot, levels=levels, | |
cmap="rainbow", alpha=0.6, transform=proj) | |
ax1.set_title(f"T{t_index+1} | Alt: {animator.levels[z_index]} km (Full - {scale_label})") | |
ax1.set_extent([animator.lons.min(), animator.lons.max(), animator.lats.min(), animator.lats.max()]) | |
ax1.coastlines(); ax1.add_feature(cfeature.BORDERS, linestyle=':') | |
ax1.add_feature(cfeature.LAND); ax1.add_feature(cfeature.OCEAN) | |
c2 = ax2.contourf(lon_zoom_grid, lat_zoom_grid, zoom_plot, levels=levels, | |
cmap="rainbow", alpha=0.6, transform=proj) | |
ax2.set_title(f"T{t_index+1} | Alt: {animator.levels[z_index]} km (Zoom - {scale_label})") | |
ax2.set_extent([lon_zoom_min, lon_zoom_max, lat_zoom_min, lat_zoom_max]) | |
ax2.coastlines(); ax2.add_feature(cfeature.BORDERS, linestyle=':') | |
ax2.add_feature(cfeature.LAND); ax2.add_feature(cfeature.OCEAN) | |
for ax in [ax1, ax2]: | |
ax.text(0.01, 0.98, f"Altitude: {animator.levels[z_index]:.2f} km", transform=ax.transAxes, | |
fontsize=9, color='white', va='top', ha='left', | |
bbox=dict(facecolor='black', alpha=0.4, boxstyle='round')) | |
if include_metadata: | |
fig.text(0.50, 0.1, legend_text, va='center', ha='left', fontsize=8, | |
bbox=dict(facecolor='white', alpha=0.8, edgecolor='gray'), | |
transform=fig.transFigure) | |
if np.nanmax(valid_vals) > threshold: | |
for ax in [ax1, ax2]: | |
ax.text(0.99, 0.01, f"⚠ Exceeds {threshold} g/m³!", transform=ax.transAxes, | |
ha='right', va='bottom', fontsize=10, color='red', | |
bbox=dict(facecolor='white', alpha=0.8, edgecolor='red')) | |
ax1.contour(animator.lons, animator.lats, interp, levels=[threshold], colors='red', linewidths=2, transform=proj) | |
ax2.contour(lon_zoom_grid, lat_zoom_grid, zoom_plot, levels=[threshold], colors='red', linewidths=2, transform=proj) | |
if not hasattr(update, "colorbar"): | |
update.colorbar = fig.colorbar(c1, ax=[ax1, ax2], orientation='vertical', | |
label="Ash concentration (g/m³)", shrink=0.75) | |
formatter = mticker.FuncFormatter(lambda x, _: f'{x:.2g}') | |
update.colorbar.ax.yaxis.set_major_formatter(formatter) | |
if use_log: | |
update.colorbar.ax.text(1.05, 1.02, "log scale", transform=update.colorbar.ax.transAxes, | |
fontsize=9, color='gray', rotation=90, ha='left', va='bottom') | |
######################3 | |
texts_ax1, texts_ax2 = [], [] | |
for country in country_geoms: | |
name = country.attributes['NAME_LONG'] | |
geom = country.geometry | |
try: | |
lon, lat = geom.centroid.x, geom.centroid.y | |
if (lon_zoom_min <= lon <= lon_zoom_max) and (lat_zoom_min <= lat <= lat_zoom_max): | |
text = ax2.text(lon, lat, name, fontsize=6, transform=proj, | |
ha='center', va='center', color='white', | |
bbox=dict(facecolor='black', alpha=0.5, linewidth=0)) | |
texts_ax2.append(text) | |
if (animator.lons.min() <= lon <= animator.lons.max()) and (animator.lats.min() <= lat <= animator.lats.max()): | |
text = ax1.text(lon, lat, name, fontsize=6, transform=proj, | |
ha='center', va='center', color='white', | |
bbox=dict(facecolor='black', alpha=0.5, linewidth=0)) | |
texts_ax1.append(text) | |
except: | |
continue | |
adjust_text(texts_ax1, ax=ax1, only_move={'points': 'y', 'text': 'y'}, | |
arrowprops=dict(arrowstyle="->", color='white', lw=0.5)) | |
adjust_text(texts_ax2, ax=ax2, only_move={'points': 'y', 'text': 'y'}, | |
arrowprops=dict(arrowstyle="->", color='white', lw=0.5)) | |
############################################ | |
return [] | |
os.makedirs(os.path.dirname(output_path), exist_ok=True) | |
ani = animation.FuncAnimation(fig, update, frames=z_indices_with_data, blit=False) | |
ani.save(output_path, writer='pillow', fps=fps) | |
plt.close() | |
print(f"✅ Saved vertical profile animation for T{t_index+1} to {output_path}") | |
def animate_all_vertical_profiles(animator, output_folder: str, fps: int = 2, | |
include_metadata: bool = True, threshold: float = 0.1, | |
zoom_width_deg: float = 10.0, zoom_height_deg: float = 6.0): | |
os.makedirs(output_folder, exist_ok=True) | |
for t_index in range(len(animator.datasets)): | |
output_path = os.path.join(output_folder, f"vertical_T{t_index+1:02d}.gif") | |
print(f"🔄 Generating vertical profile animation for T{t_index+1}...") | |
animate_vertical_profile(animator, t_index, output_path, fps, | |
include_metadata, threshold, | |
zoom_width_deg, zoom_height_deg) | |