Spaces:
Configuration error
Configuration error
# import os | |
# import numpy as np | |
# import matplotlib.pyplot as plt | |
# import matplotlib.animation as animation | |
# import matplotlib.ticker as mticker | |
# import cartopy.crs as ccrs | |
# import cartopy.feature as cfeature | |
# from adjustText import adjust_text | |
# import cartopy.io.shapereader as shpreader | |
# from .interpolation import interpolate_grid | |
# from .basemaps import draw_etopo_basemap | |
# def animate_all_z_levels(animator, output_folder: str, fps: int = 2, threshold: float = 0.1): | |
# os.makedirs(output_folder, exist_ok=True) | |
# countries_shp = shpreader.natural_earth(resolution='110m', category='cultural', name='admin_0_countries') | |
# reader = shpreader.Reader(countries_shp) | |
# country_geoms = list(reader.records()) | |
# for z_index, z_val in enumerate(animator.levels): | |
# fig = plt.figure(figsize=(16, 7)) | |
# proj = ccrs.PlateCarree() | |
# ax1 = fig.add_subplot(1, 2, 1, projection=proj) | |
# ax2 = fig.add_subplot(1, 2, 2, projection=proj) | |
# valid_mask = np.stack([ | |
# ds['ash_concentration'].values[z_index] for ds in animator.datasets | |
# ]).max(axis=0) > 0 | |
# y_idx, x_idx = np.where(valid_mask) | |
# if y_idx.size == 0 or x_idx.size == 0: | |
# print(f"Z level {z_val} km has no valid data. Skipping...") | |
# plt.close() | |
# continue | |
# y_min, y_max = y_idx.min(), y_idx.max() | |
# x_min, x_max = x_idx.min(), x_idx.max() | |
# buffer_y = int((y_max - y_min) * 0.5) | |
# buffer_x = int((x_max - x_min) * 0.5) | |
# y_start = max(0, y_min - buffer_y) | |
# y_end = min(animator.lat_grid.shape[0], y_max + buffer_y + 1) | |
# x_start = max(0, x_min - buffer_x) | |
# x_end = min(animator.lon_grid.shape[1], x_max + buffer_x + 1) | |
# lat_zoom = animator.lats[y_start:y_end] | |
# lon_zoom = animator.lons[x_start:x_end] | |
# lon_zoom_grid, lat_zoom_grid = np.meshgrid(lon_zoom, lat_zoom) | |
# valid_frames = [] | |
# for t in range(len(animator.datasets)): | |
# data = animator.datasets[t]['ash_concentration'].values[z_index] | |
# interp = interpolate_grid(data, animator.lon_grid, animator.lat_grid) | |
# interp = np.where(interp < 0, np.nan, interp) | |
# if np.isfinite(interp).sum() > 0: | |
# valid_frames.append(t) | |
# if not valid_frames: | |
# print(f"No valid frames for Z={z_val} km. Skipping animation.") | |
# plt.close() | |
# continue | |
# def update(t): | |
# ax1.clear() | |
# ax2.clear() | |
# data = animator.datasets[t]['ash_concentration'].values[z_index] | |
# interp = interpolate_grid(data, animator.lon_grid, animator.lat_grid) | |
# interp = np.where(interp < 0, np.nan, interp) | |
# zoom_plot = interp[y_start:y_end, x_start:x_end] | |
# valid_vals = interp[np.isfinite(interp)] | |
# if valid_vals.size == 0: | |
# return [] | |
# min_val = np.nanmin(valid_vals) | |
# max_val = np.nanmax(valid_vals) | |
# log_cutoff = 1e-3 | |
# log_ratio = max_val / (min_val + 1e-6) | |
# use_log = min_val > log_cutoff and log_ratio > 100 | |
# if use_log: | |
# data_for_plot = np.where(interp > log_cutoff, interp, np.nan) | |
# levels = np.logspace(np.log10(log_cutoff), np.log10(max_val), 20) | |
# scale_label = "Hybrid Log" | |
# else: | |
# data_for_plot = interp | |
# levels = np.linspace(0, max_val, 20) | |
# scale_label = "Linear" | |
# draw_etopo_basemap(ax1, mode='stock') | |
# draw_etopo_basemap(ax2, mode='stock') | |
# c1 = ax1.contourf(animator.lons, animator.lats, data_for_plot, levels=levels, | |
# cmap="rainbow", alpha=0.6, transform=proj) | |
# ax1.contour(animator.lons, animator.lats, data_for_plot, levels=levels, | |
# colors='black', linewidths=0.5, transform=proj) | |
# ax1.set_title(f"T{t+1} | Alt: {z_val} km (Full - {scale_label})") | |
# ax1.set_extent([animator.lons.min(), animator.lons.max(), animator.lats.min(), animator.lats.max()]) | |
# ax1.coastlines() | |
# ax1.add_feature(cfeature.BORDERS, linestyle=':') | |
# ax1.add_feature(cfeature.LAND) | |
# ax1.add_feature(cfeature.OCEAN) | |
# c2 = ax2.contourf(lon_zoom_grid, lat_zoom_grid, zoom_plot, levels=levels, | |
# cmap="rainbow", alpha=0.4, transform=proj) | |
# ax2.contour(lon_zoom_grid, lat_zoom_grid, zoom_plot, levels=levels, | |
# colors='black', linewidths=0.5, transform=proj) | |
# ax2.set_title(f"T{t+1} | Alt: {z_val} km (Zoom - {scale_label})") | |
# ax2.set_extent([lon_zoom.min(), lon_zoom.max(), lat_zoom.min(), lat_zoom.max()]) | |
# ax2.coastlines() | |
# ax2.add_feature(cfeature.BORDERS, linestyle=':') | |
# ax2.add_feature(cfeature.LAND) | |
# ax2.add_feature(cfeature.OCEAN) | |
# ax2.text(animator.lons[0], animator.lats[0], animator.country_label, fontsize=9, color='white', | |
# transform=proj, bbox=dict(facecolor='black', alpha=0.5)) | |
# texts_ax1, texts_ax2 = [], [] | |
# for country in country_geoms: | |
# name = country.attributes['NAME_LONG'] | |
# geom = country.geometry | |
# try: | |
# lon, lat = geom.centroid.x, geom.centroid.y | |
# if (lon_zoom.min() <= lon <= lon_zoom.max()) and (lat_zoom.min() <= lat <= lat_zoom.max()): | |
# text = ax2.text(lon, lat, name, fontsize=6, transform=proj, | |
# ha='center', va='center', color='white', | |
# bbox=dict(facecolor='black', alpha=0.5, linewidth=0)) | |
# texts_ax2.append(text) | |
# if (animator.lons.min() <= lon <= animator.lons.max()) and (animator.lats.min() <= lat <= animator.lats.max()): | |
# text = ax1.text(lon, lat, name, fontsize=6, transform=proj, | |
# ha='center', va='center', color='white', | |
# bbox=dict(facecolor='black', alpha=0.5, linewidth=0)) | |
# texts_ax1.append(text) | |
# except: | |
# continue | |
# adjust_text(texts_ax1, ax=ax1, only_move={'points': 'y', 'text': 'y'}, | |
# arrowprops=dict(arrowstyle="->", color='white', lw=0.5)) | |
# adjust_text(texts_ax2, ax=ax2, only_move={'points': 'y', 'text': 'y'}, | |
# arrowprops=dict(arrowstyle="->", color='white', lw=0.5)) | |
# if np.nanmax(valid_vals) > threshold: | |
# alert_text = f"⚠ Exceeds {threshold} g/m³!" | |
# for ax in [ax1, ax2]: | |
# ax.text(0.99, 0.01, alert_text, transform=ax.transAxes, | |
# ha='right', va='bottom', fontsize=10, color='red', | |
# bbox=dict(facecolor='white', alpha=0.8, edgecolor='red')) | |
# ax1.contour(animator.lons, animator.lats, interp, levels=[threshold], colors='red', linewidths=2, transform=proj) | |
# ax2.contour(lon_zoom_grid, lat_zoom_grid, zoom_plot, levels=[threshold], colors='red', linewidths=2, transform=proj) | |
# if not hasattr(update, "colorbar"): | |
# update.colorbar = fig.colorbar(c1, ax=[ax1, ax2], orientation='vertical', | |
# label="Ash concentration (g/m³)") | |
# formatter = mticker.FuncFormatter(lambda x, _: f'{x:.2g}') | |
# update.colorbar.ax.yaxis.set_major_formatter(formatter) | |
# if use_log: | |
# update.colorbar.ax.text(1.05, 1.02, "log scale", transform=update.colorbar.ax.transAxes, | |
# fontsize=9, color='gray', rotation=90, ha='left', va='bottom') | |
# return [] | |
# ani = animation.FuncAnimation(fig, update, frames=valid_frames, blit=False) | |
# gif_path = os.path.join(output_folder, f"ash_T1-Tn_Z{z_index+1}.gif") | |
# ani.save(gif_path, writer='pillow', fps=fps) | |
# plt.close() | |
# print(f"✅ Saved animation for Z={z_val} km to {gif_path}") | |
################################################################################################################### | |
# import os | |
# import numpy as np | |
# import matplotlib.pyplot as plt | |
# import matplotlib.animation as animation | |
# import matplotlib.ticker as mticker | |
# import cartopy.crs as ccrs | |
# import cartopy.feature as cfeature | |
# from adjustText import adjust_text | |
# import cartopy.io.shapereader as shpreader | |
# from .interpolation import interpolate_grid | |
# from .basemaps import draw_etopo_basemap | |
# def animate_all_z_levels(animator, output_folder: str, fps: int = 2, threshold: float = 0.1): | |
# os.makedirs(output_folder, exist_ok=True) | |
# countries_shp = shpreader.natural_earth(resolution='110m', category='cultural', name='admin_0_countries') | |
# reader = shpreader.Reader(countries_shp) | |
# country_geoms = list(reader.records()) | |
# # Compute consistent zoom window across all z-levels and time frames | |
# valid_mask_all = np.zeros_like(animator.datasets[0]['ash_concentration'].values[0], dtype=bool) | |
# for ds in animator.datasets: | |
# for z in range(len(animator.levels)): | |
# valid_mask_all |= ds['ash_concentration'].values[z] > 0 | |
# y_idx_all, x_idx_all = np.where(valid_mask_all) | |
# if y_idx_all.size == 0 or x_idx_all.size == 0: | |
# raise ValueError("No valid data found across any Z level or frame.") | |
# y_min, y_max = y_idx_all.min(), y_idx_all.max() | |
# x_min, x_max = x_idx_all.min(), x_idx_all.max() | |
# buffer_y = int((y_max - y_min) * 0.5) | |
# buffer_x = int((x_max - x_min) * 0.5) | |
# y_start = max(0, y_min - buffer_y) | |
# y_end = min(animator.lat_grid.shape[0], y_max + buffer_y + 1) | |
# x_start = max(0, x_min - buffer_x) | |
# x_end = min(animator.lon_grid.shape[1], x_max + buffer_x + 1) | |
# lat_zoom = animator.lats[y_start:y_end] | |
# lon_zoom = animator.lons[x_start:x_end] | |
# lon_zoom_grid, lat_zoom_grid = np.meshgrid(lon_zoom, lat_zoom) | |
# for z_index, z_val in enumerate(animator.levels): | |
# fig = plt.figure(figsize=(16, 7)) | |
# proj = ccrs.PlateCarree() | |
# ax1 = fig.add_subplot(1, 2, 1, projection=proj) | |
# ax2 = fig.add_subplot(1, 2, 2, projection=proj) | |
# valid_frames = [] | |
# for t in range(len(animator.datasets)): | |
# data = animator.datasets[t]['ash_concentration'].values[z_index] | |
# interp = interpolate_grid(data, animator.lon_grid, animator.lat_grid) | |
# interp = np.where(interp < 0, np.nan, interp) | |
# if np.isfinite(interp).sum() > 0: | |
# valid_frames.append(t) | |
# if not valid_frames: | |
# print(f"No valid frames for Z={z_val} km. Skipping animation.") | |
# plt.close() | |
# continue | |
# def update(t): | |
# ax1.clear() | |
# ax2.clear() | |
# data = animator.datasets[t]['ash_concentration'].values[z_index] | |
# interp = interpolate_grid(data, animator.lon_grid, animator.lat_grid) | |
# interp = np.where(interp < 0, np.nan, interp) | |
# zoom_plot = interp[y_start:y_end, x_start:x_end] | |
# valid_vals = interp[np.isfinite(interp)] | |
# if valid_vals.size == 0: | |
# return [] | |
# min_val = np.nanmin(valid_vals) | |
# max_val = np.nanmax(valid_vals) | |
# log_cutoff = 1e-3 | |
# log_ratio = max_val / (min_val + 1e-6) | |
# use_log = min_val > log_cutoff and log_ratio > 100 | |
# if use_log: | |
# data_for_plot = np.where(interp > log_cutoff, interp, np.nan) | |
# levels = np.logspace(np.log10(log_cutoff), np.log10(max_val), 20) | |
# scale_label = "Hybrid Log" | |
# else: | |
# data_for_plot = interp | |
# levels = np.linspace(0, max_val, 20) | |
# scale_label = "Linear" | |
# draw_etopo_basemap(ax1, mode='stock') | |
# draw_etopo_basemap(ax2, mode='stock') | |
# c1 = ax1.contourf(animator.lons, animator.lats, data_for_plot, levels=levels, | |
# cmap="rainbow", alpha=0.6, transform=proj) | |
# ax1.contour(animator.lons, animator.lats, data_for_plot, levels=levels, | |
# colors='black', linewidths=0.5, transform=proj) | |
# ax1.set_title(f"T{t+1} | Alt: {z_val} km (Full - {scale_label})") | |
# ax1.set_extent([animator.lons.min(), animator.lons.max(), animator.lats.min(), animator.lats.max()]) | |
# ax1.coastlines() | |
# ax1.add_feature(cfeature.BORDERS, linestyle=':') | |
# ax1.add_feature(cfeature.LAND) | |
# ax1.add_feature(cfeature.OCEAN) | |
# c2 = ax2.contourf(lon_zoom_grid, lat_zoom_grid, zoom_plot, levels=levels, | |
# cmap="rainbow", alpha=0.4, transform=proj) | |
# ax2.contour(lon_zoom_grid, lat_zoom_grid, zoom_plot, levels=levels, | |
# colors='black', linewidths=0.5, transform=proj) | |
# ax2.set_title(f"T{t+1} | Alt: {z_val} km (Zoom - {scale_label})") | |
# ax2.set_extent([lon_zoom.min(), lon_zoom.max(), lat_zoom.min(), lat_zoom.max()]) | |
# ax2.coastlines() | |
# ax2.add_feature(cfeature.BORDERS, linestyle=':') | |
# ax2.add_feature(cfeature.LAND) | |
# ax2.add_feature(cfeature.OCEAN) | |
# ax2.text(animator.lons[0], animator.lats[0], animator.country_label, fontsize=9, color='white', | |
# transform=proj, bbox=dict(facecolor='black', alpha=0.5)) | |
# texts_ax1, texts_ax2 = [], [] | |
# for country in country_geoms: | |
# name = country.attributes['NAME_LONG'] | |
# geom = country.geometry | |
# try: | |
# lon, lat = geom.centroid.x, geom.centroid.y | |
# if (lon_zoom.min() <= lon <= lon_zoom.max()) and (lat_zoom.min() <= lat <= lat_zoom.max()): | |
# text = ax2.text(lon, lat, name, fontsize=6, transform=proj, | |
# ha='center', va='center', color='white', | |
# bbox=dict(facecolor='black', alpha=0.5, linewidth=0)) | |
# texts_ax2.append(text) | |
# if (animator.lons.min() <= lon <= animator.lons.max()) and (animator.lats.min() <= lat <= animator.lats.max()): | |
# text = ax1.text(lon, lat, name, fontsize=6, transform=proj, | |
# ha='center', va='center', color='white', | |
# bbox=dict(facecolor='black', alpha=0.5, linewidth=0)) | |
# texts_ax1.append(text) | |
# except: | |
# continue | |
# adjust_text(texts_ax1, ax=ax1, only_move={'points': 'y', 'text': 'y'}, | |
# arrowprops=dict(arrowstyle="->", color='white', lw=0.5)) | |
# adjust_text(texts_ax2, ax=ax2, only_move={'points': 'y', 'text': 'y'}, | |
# arrowprops=dict(arrowstyle="->", color='white', lw=0.5)) | |
# if np.nanmax(valid_vals) > threshold: | |
# alert_text = f"⚠ Exceeds {threshold} g/m³!" | |
# for ax in [ax1, ax2]: | |
# ax.text(0.99, 0.01, alert_text, transform=ax.transAxes, | |
# ha='right', va='bottom', fontsize=10, color='red', | |
# bbox=dict(facecolor='white', alpha=0.8, edgecolor='red')) | |
# ax1.contour(animator.lons, animator.lats, interp, levels=[threshold], colors='red', linewidths=2, transform=proj) | |
# ax2.contour(lon_zoom_grid, lat_zoom_grid, zoom_plot, levels=[threshold], colors='red', linewidths=2, transform=proj) | |
# if not hasattr(update, "colorbar"): | |
# update.colorbar = fig.colorbar(c1, ax=[ax1, ax2], orientation='vertical', | |
# label="Ash concentration (g/m³)") | |
# formatter = mticker.FuncFormatter(lambda x, _: f'{x:.2g}') | |
# update.colorbar.ax.yaxis.set_major_formatter(formatter) | |
# if use_log: | |
# update.colorbar.ax.text(1.05, 1.02, "log scale", transform=update.colorbar.ax.transAxes, | |
# fontsize=9, color='gray', rotation=90, ha='left', va='bottom') | |
# return [] | |
# ani = animation.FuncAnimation(fig, update, frames=valid_frames, blit=False) | |
# gif_path = os.path.join(output_folder, f"ash_T1-Tn_Z{z_index+1}.gif") | |
# ani.save(gif_path, writer='pillow', fps=fps) | |
# plt.close() | |
# print(f"✅ Saved animation for Z={z_val} km to {gif_path}") | |
import os | |
import numpy as np | |
import matplotlib.pyplot as plt | |
import matplotlib.animation as animation | |
import matplotlib.ticker as mticker | |
import cartopy.crs as ccrs | |
import cartopy.feature as cfeature | |
from adjustText import adjust_text | |
import cartopy.io.shapereader as shpreader | |
from .interpolation import interpolate_grid | |
from .basemaps import draw_etopo_basemap | |
def animate_all_z_levels(animator, output_folder: str, fps: int = 2, threshold: float = 0.1, | |
zoom_width_deg: float = 6.0, zoom_height_deg: float = 6.0): | |
os.makedirs(output_folder, exist_ok=True) | |
countries_shp = shpreader.natural_earth(resolution='110m', category='cultural', name='admin_0_countries') | |
reader = shpreader.Reader(countries_shp) | |
country_geoms = list(reader.records()) | |
# Find the most active region (max concentration point) | |
max_conc = -np.inf | |
center_lat = center_lon = None | |
for ds in animator.datasets: | |
for z in range(len(animator.levels)): | |
data = ds['ash_concentration'].values[z] | |
if np.max(data) > max_conc: | |
max_conc = np.max(data) | |
max_idx = np.unravel_index(np.argmax(data), data.shape) | |
center_lat = animator.lat_grid[max_idx] | |
center_lon = animator.lon_grid[max_idx] | |
if center_lat is None or center_lon is None: | |
raise ValueError("No valid concentration found to determine zoom center.") | |
# Compute fixed zoom extents in lat/lon degrees | |
lon_zoom_min = center_lon - zoom_width_deg / 2 | |
lon_zoom_max = center_lon + zoom_width_deg / 2 | |
lat_zoom_min = center_lat - zoom_height_deg / 2 | |
lat_zoom_max = center_lat + zoom_height_deg / 2 | |
# Create zoom grids for plotting | |
lat_zoom = animator.lats[(animator.lats >= lat_zoom_min) & (animator.lats <= lat_zoom_max)] | |
lon_zoom = animator.lons[(animator.lons >= lon_zoom_min) & (animator.lons <= lon_zoom_max)] | |
lon_zoom_grid, lat_zoom_grid = np.meshgrid(lon_zoom, lat_zoom) | |
for z_index, z_val in enumerate(animator.levels): | |
fig = plt.figure(figsize=(16, 7)) | |
proj = ccrs.PlateCarree() | |
ax1 = fig.add_subplot(1, 2, 1, projection=proj) | |
ax2 = fig.add_subplot(1, 2, 2, projection=proj) | |
valid_frames = [] | |
for t in range(len(animator.datasets)): | |
data = animator.datasets[t]['ash_concentration'].values[z_index] | |
interp = interpolate_grid(data, animator.lon_grid, animator.lat_grid) | |
interp = np.where(interp < 0, np.nan, interp) | |
if np.isfinite(interp).sum() > 0: | |
valid_frames.append(t) | |
if not valid_frames: | |
print(f"No valid frames for Z={z_val} km. Skipping animation.") | |
plt.close() | |
continue | |
def update(t): | |
ax1.clear() | |
ax2.clear() | |
data = animator.datasets[t]['ash_concentration'].values[z_index] | |
interp = interpolate_grid(data, animator.lon_grid, animator.lat_grid) | |
interp = np.where(interp < 0, np.nan, interp) | |
# Extract zoom window from interpolated data | |
lat_idx = np.where((animator.lats >= lat_zoom_min) & (animator.lats <= lat_zoom_max))[0] | |
lon_idx = np.where((animator.lons >= lon_zoom_min) & (animator.lons <= lon_zoom_max))[0] | |
zoom_plot = interp[np.ix_(lat_idx, lon_idx)] | |
valid_vals = interp[np.isfinite(interp)] | |
if valid_vals.size == 0: | |
return [] | |
min_val = np.nanmin(valid_vals) | |
max_val = np.nanmax(valid_vals) | |
log_cutoff = 1e-3 | |
log_ratio = max_val / (min_val + 1e-6) | |
use_log = min_val > log_cutoff and log_ratio > 100 | |
if use_log: | |
data_for_plot = np.where(interp > log_cutoff, interp, np.nan) | |
levels = np.logspace(np.log10(log_cutoff), np.log10(max_val), 20) | |
scale_label = "Hybrid Log" | |
else: | |
data_for_plot = interp | |
levels = np.linspace(0, max_val, 20) | |
scale_label = "Linear" | |
draw_etopo_basemap(ax1, mode='stock') | |
draw_etopo_basemap(ax2, mode='stock') | |
c1 = ax1.contourf(animator.lons, animator.lats, data_for_plot, levels=levels, | |
cmap="rainbow", alpha=0.6, transform=proj) | |
ax1.contour(animator.lons, animator.lats, data_for_plot, levels=levels, | |
colors='black', linewidths=0.5, transform=proj) | |
ax1.set_title(f"T{t+1} | Alt: {z_val} km (Full - {scale_label})") | |
ax1.set_extent([animator.lons.min(), animator.lons.max(), animator.lats.min(), animator.lats.max()]) | |
ax1.coastlines() | |
ax1.add_feature(cfeature.BORDERS, linestyle=':') | |
ax1.add_feature(cfeature.LAND) | |
ax1.add_feature(cfeature.OCEAN) | |
c2 = ax2.contourf(lon_zoom_grid, lat_zoom_grid, zoom_plot, levels=levels, | |
cmap="rainbow", alpha=0.4, transform=proj) | |
ax2.contour(lon_zoom_grid, lat_zoom_grid, zoom_plot, levels=levels, | |
colors='black', linewidths=0.5, transform=proj) | |
ax2.set_title(f"T{t+1} | Alt: {z_val} km (Zoom - {scale_label})") | |
ax2.set_extent([lon_zoom_min, lon_zoom_max, lat_zoom_min, lat_zoom_max]) | |
ax2.coastlines() | |
ax2.add_feature(cfeature.BORDERS, linestyle=':') | |
ax2.add_feature(cfeature.LAND) | |
ax2.add_feature(cfeature.OCEAN) | |
ax2.text(animator.lons[0], animator.lats[0], animator.country_label, fontsize=9, color='white', | |
transform=proj, bbox=dict(facecolor='black', alpha=0.5)) | |
texts_ax1, texts_ax2 = [], [] | |
for country in country_geoms: | |
name = country.attributes['NAME_LONG'] | |
geom = country.geometry | |
try: | |
lon, lat = geom.centroid.x, geom.centroid.y | |
if (lon_zoom_min <= lon <= lon_zoom_max) and (lat_zoom_min <= lat <= lat_zoom_max): | |
text = ax2.text(lon, lat, name, fontsize=6, transform=proj, | |
ha='center', va='center', color='white', | |
bbox=dict(facecolor='black', alpha=0.5, linewidth=0)) | |
texts_ax2.append(text) | |
if (animator.lons.min() <= lon <= animator.lons.max()) and (animator.lats.min() <= lat <= animator.lats.max()): | |
text = ax1.text(lon, lat, name, fontsize=6, transform=proj, | |
ha='center', va='center', color='white', | |
bbox=dict(facecolor='black', alpha=0.5, linewidth=0)) | |
texts_ax1.append(text) | |
except: | |
continue | |
adjust_text(texts_ax1, ax=ax1, only_move={'points': 'y', 'text': 'y'}, | |
arrowprops=dict(arrowstyle="->", color='white', lw=0.5)) | |
adjust_text(texts_ax2, ax=ax2, only_move={'points': 'y', 'text': 'y'}, | |
arrowprops=dict(arrowstyle="->", color='white', lw=0.5)) | |
if np.nanmax(valid_vals) > threshold: | |
alert_text = f"⚠ Exceeds {threshold} g/m³!" | |
for ax in [ax1, ax2]: | |
ax.text(0.99, 0.01, alert_text, transform=ax.transAxes, | |
ha='right', va='bottom', fontsize=10, color='red', | |
bbox=dict(facecolor='white', alpha=0.8, edgecolor='red')) | |
ax1.contour(animator.lons, animator.lats, interp, levels=[threshold], colors='red', linewidths=2, transform=proj) | |
ax2.contour(lon_zoom_grid, lat_zoom_grid, zoom_plot, levels=[threshold], colors='red', linewidths=2, transform=proj) | |
if not hasattr(update, "colorbar"): | |
update.colorbar = fig.colorbar(c1, ax=[ax1, ax2], orientation='vertical', | |
label="Ash concentration (g/m³)") | |
formatter = mticker.FuncFormatter(lambda x, _: f'{x:.2g}') | |
update.colorbar.ax.yaxis.set_major_formatter(formatter) | |
if use_log: | |
update.colorbar.ax.text(1.05, 1.02, "log scale", transform=update.colorbar.ax.transAxes, | |
fontsize=9, color='gray', rotation=90, ha='left', va='bottom') | |
return [] | |
ani = animation.FuncAnimation(fig, update, frames=valid_frames, blit=False) | |
gif_path = os.path.join(output_folder, f"ash_T1-Tn_Z{z_index+1}.gif") | |
ani.save(gif_path, writer='pillow', fps=fps) | |
plt.close() | |
print(f"✅ Saved animation for Z={z_val} km to {gif_path}") | |