Spaces:
Sleeping
Sleeping
Mahiruoshi
commited on
Commit
•
5c5159a
1
Parent(s):
a46a731
Upload 2 files
Browse files
main.py
ADDED
@@ -0,0 +1,241 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
import gradio as gr
|
3 |
+
import torch
|
4 |
+
import unicodedata
|
5 |
+
import commons
|
6 |
+
import utils
|
7 |
+
import pathlib
|
8 |
+
from models import SynthesizerTrn
|
9 |
+
from text import text_to_sequence
|
10 |
+
import time
|
11 |
+
import os
|
12 |
+
import io
|
13 |
+
from scipy.io.wavfile import write
|
14 |
+
from flask import Flask, request
|
15 |
+
from threading import Thread
|
16 |
+
import openai
|
17 |
+
import requests
|
18 |
+
import json
|
19 |
+
import soundfile as sf
|
20 |
+
from scipy import signal
|
21 |
+
class VitsGradio:
|
22 |
+
def __init__(self):
|
23 |
+
self.lan = ["中文","日文","自动"]
|
24 |
+
self.chatapi = ["gpt-3.5-turbo","gpt3"]
|
25 |
+
self.modelPaths = []
|
26 |
+
for root,dirs,files in os.walk("checkpoints"):
|
27 |
+
for dir in dirs:
|
28 |
+
self.modelPaths.append(dir)
|
29 |
+
with gr.Blocks() as self.Vits:
|
30 |
+
with gr.Tab("调试用"):
|
31 |
+
with gr.Row():
|
32 |
+
with gr.Column():
|
33 |
+
with gr.Row():
|
34 |
+
with gr.Column():
|
35 |
+
self.text = gr.TextArea(label="Text", value="你好")
|
36 |
+
with gr.Accordion(label="测试api", open=False):
|
37 |
+
self.local_chat1 = gr.Checkbox(value=False, label="使用网址+文本进行模拟")
|
38 |
+
self.url_input = gr.TextArea(label="键入测试", value="http://127.0.0.1:8080/chat?Text=")
|
39 |
+
butto = gr.Button("模拟前端抓取语音文件")
|
40 |
+
btnVC = gr.Button("测试tts+对话程序")
|
41 |
+
with gr.Column():
|
42 |
+
output2 = gr.TextArea(label="回复")
|
43 |
+
output1 = gr.Audio(label="采样率22050")
|
44 |
+
output3 = gr.outputs.File(label="44100hz: output.wav")
|
45 |
+
butto.click(self.Simul, inputs=[self.text, self.url_input], outputs=[output2,output3])
|
46 |
+
btnVC.click(self.tts_fn, inputs=[self.text], outputs=[output1,output2])
|
47 |
+
with gr.Tab("控制面板"):
|
48 |
+
with gr.Row():
|
49 |
+
with gr.Column():
|
50 |
+
with gr.Row():
|
51 |
+
with gr.Column():
|
52 |
+
self.api_input1 = gr.TextArea(label="输入api-key或本地存储说话模型的路径", value="https://platform.openai.com/account/api-keys")
|
53 |
+
with gr.Accordion(label="chatbot选择", open=False):
|
54 |
+
self.api_input2 = gr.Checkbox(value=True, label="采用gpt3.5")
|
55 |
+
self.local_chat1 = gr.Checkbox(value=False, label="启动本地chatbot")
|
56 |
+
self.local_chat2 = gr.Checkbox(value=True, label="是否量化")
|
57 |
+
res = gr.TextArea()
|
58 |
+
Botselection = gr.Button("完成chatbot设定")
|
59 |
+
Botselection.click(self.check_bot, inputs=[self.api_input1,self.api_input2,self.local_chat1,self.local_chat2], outputs = [res])
|
60 |
+
self.input1 = gr.Dropdown(label = "模型", choices = self.modelPaths, value = self.modelPaths[0], type = "value")
|
61 |
+
self.input2 = gr.Dropdown(label="Language", choices=self.lan, value="自动", interactive=True)
|
62 |
+
with gr.Column():
|
63 |
+
btnVC = gr.Button("完成vits TTS端设定")
|
64 |
+
self.input3 = gr.Dropdown(label="Speaker", choices=list(range(101)), value=0, interactive=True)
|
65 |
+
self.input4 = gr.Slider(minimum=0, maximum=1.0, label="更改噪声比例(noise scale),以控制情感", value=0.267)
|
66 |
+
self.input5 = gr.Slider(minimum=0, maximum=1.0, label="更改噪声偏差(noise scale w),以控制音素长短", value=0.7)
|
67 |
+
self.input6 = gr.Slider(minimum=0.1, maximum=10, label="duration", value=1)
|
68 |
+
statusa = gr.TextArea()
|
69 |
+
btnVC.click(self.create_tts_fn, inputs=[self.input1, self.input2, self.input3, self.input4, self.input5, self.input6], outputs = [statusa])
|
70 |
+
|
71 |
+
def Simul(self,text,url_input):
|
72 |
+
web = url_input + text
|
73 |
+
res = requests.get(web)
|
74 |
+
music = res.content
|
75 |
+
with open('output.wav', 'wb') as code:
|
76 |
+
code.write(music)
|
77 |
+
file_path = "output.wav"
|
78 |
+
return web,file_path
|
79 |
+
|
80 |
+
|
81 |
+
def chatgpt(self,text):
|
82 |
+
self.messages.append({"role": "user", "content": text},)
|
83 |
+
chat = openai.ChatCompletion.create(model="gpt-3.5-turbo", messages= self.messages)
|
84 |
+
reply = chat.choices[0].message.content
|
85 |
+
return reply
|
86 |
+
|
87 |
+
def ChATGLM(self,text):
|
88 |
+
if text == 'clear':
|
89 |
+
self.history = []
|
90 |
+
response, new_history = self.model.chat(self.tokenizer, text, self.history)
|
91 |
+
response = response.replace(" ",'').replace("\n",'.')
|
92 |
+
self.history = new_history
|
93 |
+
return response
|
94 |
+
|
95 |
+
def gpt3_chat(self,text):
|
96 |
+
call_name = "Waifu"
|
97 |
+
openai.api_key = args.key
|
98 |
+
identity = ""
|
99 |
+
start_sequence = '\n'+str(call_name)+':'
|
100 |
+
restart_sequence = "\nYou: "
|
101 |
+
if 1 == 1:
|
102 |
+
prompt0 = text #当期prompt
|
103 |
+
if text == 'quit':
|
104 |
+
return prompt0
|
105 |
+
prompt = identity + prompt0 + start_sequence
|
106 |
+
response = openai.Completion.create(
|
107 |
+
model="text-davinci-003",
|
108 |
+
prompt=prompt,
|
109 |
+
temperature=0.5,
|
110 |
+
max_tokens=1000,
|
111 |
+
top_p=1.0,
|
112 |
+
frequency_penalty=0.5,
|
113 |
+
presence_penalty=0.0,
|
114 |
+
stop=["\nYou:"]
|
115 |
+
)
|
116 |
+
return response['choices'][0]['text'].strip()
|
117 |
+
|
118 |
+
def check_bot(self,api_input1,api_input2,local_chat1,local_chat2):
|
119 |
+
if local_chat1:
|
120 |
+
from transformers import AutoTokenizer, AutoModel
|
121 |
+
self.tokenizer = AutoTokenizer.from_pretrained(api_input1, trust_remote_code=True)
|
122 |
+
if local_chat2:
|
123 |
+
self.model = AutoModel.from_pretrained(api_input1, trust_remote_code=True).half().quantize(4).cuda()
|
124 |
+
else:
|
125 |
+
self.model = AutoModel.from_pretrained(api_input1, trust_remote_code=True)
|
126 |
+
self.history = []
|
127 |
+
else:
|
128 |
+
self.messages = []
|
129 |
+
openai.api_key = api_input1
|
130 |
+
return "Finished"
|
131 |
+
|
132 |
+
def is_japanese(self,string):
|
133 |
+
for ch in string:
|
134 |
+
if ord(ch) > 0x3040 and ord(ch) < 0x30FF:
|
135 |
+
return True
|
136 |
+
return False
|
137 |
+
|
138 |
+
def is_english(self,string):
|
139 |
+
import re
|
140 |
+
pattern = re.compile('^[A-Za-z0-9.,:;!?()_*"\' ]+$')
|
141 |
+
if pattern.fullmatch(string):
|
142 |
+
return True
|
143 |
+
else:
|
144 |
+
return False
|
145 |
+
|
146 |
+
|
147 |
+
|
148 |
+
def get_text(self,text, hps, cleaned=False):
|
149 |
+
if cleaned:
|
150 |
+
text_norm = text_to_sequence(text, self.hps_ms.symbols, [])
|
151 |
+
else:
|
152 |
+
text_norm = text_to_sequence(text, self.hps_ms.symbols, self.hps_ms.data.text_cleaners)
|
153 |
+
if self.hps_ms.data.add_blank:
|
154 |
+
text_norm = commons.intersperse(text_norm, 0)
|
155 |
+
text_norm = torch.LongTensor(text_norm)
|
156 |
+
return text_norm
|
157 |
+
|
158 |
+
|
159 |
+
def get_label(self,text, label):
|
160 |
+
if f'[{label}]' in text:
|
161 |
+
return True, text.replace(f'[{label}]', '')
|
162 |
+
else:
|
163 |
+
return False, text
|
164 |
+
|
165 |
+
def sle(self,language,text):
|
166 |
+
text = text.replace('\n','。').replace(' ',',')
|
167 |
+
if language == "中文":
|
168 |
+
tts_input1 = "[ZH]" + text + "[ZH]"
|
169 |
+
return tts_input1
|
170 |
+
elif language == "自动":
|
171 |
+
tts_input1 = f"[JA]{text}[JA]" if self.is_japanese(text) else f"[ZH]{text}[ZH]"
|
172 |
+
return tts_input1
|
173 |
+
elif language == "日文":
|
174 |
+
tts_input1 = "[JA]" + text + "[JA]"
|
175 |
+
return tts_input1
|
176 |
+
|
177 |
+
def create_tts_fn(self,path, input2, input3, n_scale= 0.667,n_scale_w = 0.8, l_scale = 1 ):
|
178 |
+
self.language = input2
|
179 |
+
self.speaker_id = int(input3)
|
180 |
+
self.n_scale = n_scale
|
181 |
+
self.n_scale_w = n_scale_w
|
182 |
+
self.l_scale = l_scale
|
183 |
+
self.dev = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
184 |
+
self.hps_ms = utils.get_hparams_from_file(f"checkpoints/{path}/config.json")
|
185 |
+
self.n_speakers = self.hps_ms.data.n_speakers if 'n_speakers' in self.hps_ms.data.keys() else 0
|
186 |
+
self.n_symbols = len(self.hps_ms.symbols) if 'symbols' in self.hps_ms.keys() else 0
|
187 |
+
self.net_g_ms = SynthesizerTrn(
|
188 |
+
self.n_symbols,
|
189 |
+
self.hps_ms.data.filter_length // 2 + 1,
|
190 |
+
self.hps_ms.train.segment_size // self.hps_ms.data.hop_length,
|
191 |
+
n_speakers=self.n_speakers,
|
192 |
+
**self.hps_ms.model).to(self.dev)
|
193 |
+
_ = self.net_g_ms.eval()
|
194 |
+
_ = utils.load_checkpoint(f"checkpoints/{path}/model.pth", self.net_g_ms)
|
195 |
+
return 'success'
|
196 |
+
|
197 |
+
|
198 |
+
def tts_fn(self,text):
|
199 |
+
if self.local_chat1:
|
200 |
+
text = self.chatgpt(text)
|
201 |
+
elif self.api_input2:
|
202 |
+
text = self.ChATGLM(text)
|
203 |
+
else:
|
204 |
+
text = self.gpt3_chat(text)
|
205 |
+
print(text)
|
206 |
+
text =self.sle(self.language,text)
|
207 |
+
with torch.no_grad():
|
208 |
+
stn_tst = self.get_text(text, self.hps_ms, cleaned=False)
|
209 |
+
x_tst = stn_tst.unsqueeze(0).to(self.dev)
|
210 |
+
x_tst_lengths = torch.LongTensor([stn_tst.size(0)]).to(self.dev)
|
211 |
+
sid = torch.LongTensor([self.speaker_id]).to(self.dev)
|
212 |
+
audio = self.net_g_ms.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=self.n_scale, noise_scale_w=self.n_scale_w, length_scale=self.l_scale)[0][
|
213 |
+
0, 0].data.cpu().float().numpy()
|
214 |
+
resampled_audio_data = signal.resample(audio, len(audio) * 2)
|
215 |
+
sf.write('temp.wav', resampled_audio_data, 44100, 'PCM_24')
|
216 |
+
return (self.hps_ms.data.sampling_rate, audio),text.replace('[JA]','').replace('[ZH]','')
|
217 |
+
|
218 |
+
app = Flask(__name__)
|
219 |
+
print("开始部���")
|
220 |
+
grVits = VitsGradio()
|
221 |
+
|
222 |
+
@app.route('/chat')
|
223 |
+
def text_api():
|
224 |
+
message = request.args.get('Text','')
|
225 |
+
audio,text = grVits.tts_fn(message)
|
226 |
+
text = text.replace('[JA]','').replace('[ZH]','')
|
227 |
+
with open('temp.wav','rb') as bit:
|
228 |
+
wav_bytes = bit.read()
|
229 |
+
headers = {
|
230 |
+
'Content-Type': 'audio/wav',
|
231 |
+
'Text': text.encode('utf-8')}
|
232 |
+
return wav_bytes, 200, headers
|
233 |
+
|
234 |
+
def gradio_interface():
|
235 |
+
return grVits.Vits.launch()
|
236 |
+
|
237 |
+
if __name__ == '__main__':
|
238 |
+
api_thread = Thread(target=app.run, args=("0.0.0.0", 8080))
|
239 |
+
gradio_thread = Thread(target=gradio_interface)
|
240 |
+
api_thread.start()
|
241 |
+
gradio_thread.start()
|
部署流程.md
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
```sh
|
2 |
+
#前置条件 已安装Anaconda
|
3 |
+
conda create -n chatbot python=3.8
|
4 |
+
conda activate chatbot
|
5 |
+
git clone https://huggingface.co/spaces/Mahiruoshi/vits-chatbot
|
6 |
+
cd vits-chatbot
|
7 |
+
pip install -r requirements.txt
|
8 |
+
python main.py
|
9 |
+
```
|