Mahiruoshi
commited on
Commit
•
4de73fc
1
Parent(s):
22980ff
Upload 73 files
Browse files- .gitattributes +2 -0
- app.py +154 -116
- attentions.py +351 -259
- checkpoints/Default/config.json +54 -0
- checkpoints/Default/model.onnx +3 -0
- checkpoints/NIjigasaki/config.json +54 -0
- checkpoints/NIjigasaki/model.onnx +3 -0
- checkpoints/ShojoKageki/model.onnx +3 -0
- checkpoints/Starlight/config.json +54 -0
- checkpoints/Starlight/model.onnx +3 -0
- checkpoints/info.json +4 -70
- cleaners/JapaneseCleaner.dll +3 -0
- cleaners/char.bin +3 -0
- cleaners/matrix.bin +3 -0
- cleaners/sys.dic +3 -0
- cleaners/unk.dic +0 -0
- commons.py +122 -58
- data_utils.py +307 -0
- export_onnx.py +140 -0
- inference.py +98 -0
- inference_onnx.py +148 -0
- local_run.py +137 -0
- losses.py +58 -0
- main.py +251 -0
- mel_processing.py +137 -0
- models.py +257 -83
- modules.py +372 -290
- requirements.txt +5 -3
- text/__init__.py +27 -3
- text/cleaners.py +14 -57
- text/english.py +188 -0
- text/japanese.py +13 -1
- text/symbols.py +67 -0
- train.py +328 -0
- transforms.py +90 -83
- utils.py +274 -43
.gitattributes
CHANGED
@@ -30,3 +30,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
30 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
31 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
32 |
image/梁芷柔.png filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
30 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
31 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
32 |
image/梁芷柔.png filter=lfs diff=lfs merge=lfs -text
|
33 |
+
cleaners/JapaneseCleaner.dll filter=lfs diff=lfs merge=lfs -text
|
34 |
+
cleaners/sys.dic filter=lfs diff=lfs merge=lfs -text
|
app.py
CHANGED
@@ -1,124 +1,162 @@
|
|
1 |
-
import
|
2 |
-
|
|
|
|
|
|
|
|
|
|
|
3 |
import torch
|
4 |
-
import
|
5 |
import commons
|
6 |
import utils
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
text_norm = commons.intersperse(text_norm, 0)
|
21 |
text_norm = torch.LongTensor(text_norm)
|
22 |
return text_norm
|
23 |
|
24 |
-
|
25 |
-
def
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
para_input2 = gr.Slider(minimum= 0.01,maximum=1.0,label="更改噪声偏差", value=0.8)
|
118 |
-
para_input3 = gr.Slider(minimum= 0.1,maximum=10,label="更改时间比例", value=1)
|
119 |
-
tts_submit = gr.Button("Generate", variant="primary")
|
120 |
-
speaker1 = gr.Dropdown(label="选择说话人",choices=idols, value="高坂穗乃果", interactive=True)
|
121 |
-
tts_output2 = gr.Audio(label="Output")
|
122 |
-
|
123 |
-
tts_submit.click(infer, [tts_input1,speaker1,para_input1,para_input2,para_input3], [tts_output2])
|
124 |
app.launch()
|
|
|
1 |
+
import logging
|
2 |
+
logging.getLogger('numba').setLevel(logging.WARNING)
|
3 |
+
logging.getLogger('matplotlib').setLevel(logging.WARNING)
|
4 |
+
logging.getLogger('urllib3').setLevel(logging.WARNING)
|
5 |
+
from text import text_to_sequence
|
6 |
+
import numpy as np
|
7 |
+
from scipy.io import wavfile
|
8 |
import torch
|
9 |
+
import json
|
10 |
import commons
|
11 |
import utils
|
12 |
+
import sys
|
13 |
+
import pathlib
|
14 |
+
import onnxruntime as ort
|
15 |
+
import gradio as gr
|
16 |
+
import argparse
|
17 |
+
import time
|
18 |
+
import os
|
19 |
+
from scipy.io.wavfile import write
|
20 |
+
|
21 |
+
def is_japanese(string):
|
22 |
+
for ch in string:
|
23 |
+
if ord(ch) > 0x3040 and ord(ch) < 0x30FF:
|
24 |
+
return True
|
25 |
+
return False
|
26 |
+
|
27 |
+
def is_english(string):
|
28 |
+
import re
|
29 |
+
pattern = re.compile('^[A-Za-z0-9.,:;!?()_*"\' ]+$')
|
30 |
+
if pattern.fullmatch(string):
|
31 |
+
return True
|
32 |
+
else:
|
33 |
+
return False
|
34 |
+
|
35 |
+
def to_numpy(tensor: torch.Tensor):
|
36 |
+
return tensor.detach().cpu().numpy() if tensor.requires_grad \
|
37 |
+
else tensor.detach().numpy()
|
38 |
+
|
39 |
+
def get_symbols_from_json(path):
|
40 |
+
assert os.path.isfile(path)
|
41 |
+
with open(path, 'r') as f:
|
42 |
+
data = json.load(f)
|
43 |
+
return data['symbols']
|
44 |
+
|
45 |
+
def sle(language,text):
|
46 |
+
text = text.replace('\n','。').replace(' ',',')
|
47 |
+
if language == "中文":
|
48 |
+
tts_input1 = "[ZH]" + text + "[ZH]"
|
49 |
+
return tts_input1
|
50 |
+
elif language == "自动":
|
51 |
+
tts_input1 = f"[JA]{text}[JA]" if is_japanese(text) else f"[ZH]{text}[ZH]"
|
52 |
+
return tts_input1
|
53 |
+
elif language == "日文":
|
54 |
+
tts_input1 = "[JA]" + text + "[JA]"
|
55 |
+
return tts_input1
|
56 |
+
elif language == "英文":
|
57 |
+
tts_input1 = "[EN]" + text + "[EN]"
|
58 |
+
return tts_input1
|
59 |
+
elif language == "手动":
|
60 |
+
return text
|
61 |
+
|
62 |
+
def get_text(text,hps_ms):
|
63 |
+
text_norm = text_to_sequence(text,hps_ms.data.text_cleaners)
|
64 |
+
if hps_ms.data.add_blank:
|
65 |
text_norm = commons.intersperse(text_norm, 0)
|
66 |
text_norm = torch.LongTensor(text_norm)
|
67 |
return text_norm
|
68 |
|
69 |
+
def create_tts_fn(ort_sess, speaker_id):
|
70 |
+
def tts_fn(text , language, n_scale= 0.667,n_scale_w = 0.8, l_scale = 1 ):
|
71 |
+
text =sle(language,text)
|
72 |
+
seq = text_to_sequence(text, cleaner_names=hps.data.text_cleaners)
|
73 |
+
if hps.data.add_blank:
|
74 |
+
seq = commons.intersperse(seq, 0)
|
75 |
+
with torch.no_grad():
|
76 |
+
x = np.array([seq], dtype=np.int64)
|
77 |
+
x_len = np.array([x.shape[1]], dtype=np.int64)
|
78 |
+
sid = np.array([speaker_id], dtype=np.int64)
|
79 |
+
scales = np.array([n_scale, n_scale_w, l_scale], dtype=np.float32)
|
80 |
+
scales.resize(1, 3)
|
81 |
+
ort_inputs = {
|
82 |
+
'input': x,
|
83 |
+
'input_lengths': x_len,
|
84 |
+
'scales': scales,
|
85 |
+
'sid': sid
|
86 |
+
}
|
87 |
+
t1 = time.time()
|
88 |
+
audio = np.squeeze(ort_sess.run(None, ort_inputs))
|
89 |
+
audio *= 32767.0 / max(0.01, np.max(np.abs(audio))) * 0.6
|
90 |
+
audio = np.clip(audio, -32767.0, 32767.0)
|
91 |
+
t2 = time.time()
|
92 |
+
spending_time = "推理时间:"+str(t2-t1)+"s"
|
93 |
+
print(spending_time)
|
94 |
+
return (hps.data.sampling_rate, audio)
|
95 |
+
return tts_fn
|
96 |
+
|
97 |
+
|
98 |
+
if __name__ == '__main__':
|
99 |
+
symbols = get_symbols_from_json('checkpoints/Nijigasaki/config.json')
|
100 |
+
hps = utils.get_hparams_from_file('checkpoints/Nijigasaki/config.json')
|
101 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
102 |
+
models = []
|
103 |
+
schools = ["ShojoKageki-Nijigasaki","ShojoKageki","Nijigasaki"]
|
104 |
+
lan = ["中文","日文","自动","手动"]
|
105 |
+
with open("checkpoints/info.json", "r", encoding="utf-8") as f:
|
106 |
+
models_info = json.load(f)
|
107 |
+
for i in models_info:
|
108 |
+
school = models_info[i]
|
109 |
+
speakers = school["speakers"]
|
110 |
+
checkpoint = school["checkpoint"]
|
111 |
+
phone_dict = {
|
112 |
+
symbol: i for i, symbol in enumerate(symbols)
|
113 |
+
}
|
114 |
+
ort_sess = ort.InferenceSession(checkpoint)
|
115 |
+
content = []
|
116 |
+
for j in speakers:
|
117 |
+
sid = int(speakers[j]['sid'])
|
118 |
+
title = school
|
119 |
+
example = speakers[j]['speech']
|
120 |
+
name = speakers[j]["name"]
|
121 |
+
content.append((sid, name, title, example, create_tts_fn(ort_sess, sid)))
|
122 |
+
models.append(content)
|
123 |
+
|
124 |
+
with gr.Blocks() as app:
|
125 |
+
gr.Markdown(
|
126 |
+
"# <center> vits-models\n"
|
127 |
+
)
|
128 |
+
with gr.Tabs():
|
129 |
+
for i in schools:
|
130 |
+
with gr.TabItem(i):
|
131 |
+
for (sid, name, title, example, tts_fn) in models[schools.index(i)]:
|
132 |
+
with gr.TabItem(name):
|
133 |
+
'''
|
134 |
+
with gr.Row():
|
135 |
+
gr.Markdown(
|
136 |
+
'<div align="center">'
|
137 |
+
f'<a><strong>{name}</strong></a>'
|
138 |
+
f'<img style="width:auto;height:300px;" src="file/{sid}.png">'
|
139 |
+
'</div>'
|
140 |
+
)
|
141 |
+
'''
|
142 |
+
with gr.Row():
|
143 |
+
with gr.Column():
|
144 |
+
with gr.Row():
|
145 |
+
with gr.Column():
|
146 |
+
gr.Markdown(
|
147 |
+
'<div align="center">'
|
148 |
+
f'<a><strong>{name}</strong></a>'
|
149 |
+
f'<img style="width:auto;height:400px;" src="file/image/{name}.png">'
|
150 |
+
'</div>'
|
151 |
+
)
|
152 |
+
input2 = gr.Dropdown(label="Language", choices=lan, value="自动", interactive=True)
|
153 |
+
with gr.Column():
|
154 |
+
input1 = gr.TextArea(label="Text", value=example)
|
155 |
+
input4 = gr.Slider(minimum=0, maximum=1.0, label="更改噪声比例(noise scale),以控制情感", value=0.6)
|
156 |
+
input5 = gr.Slider(minimum=0, maximum=1.0, label="更改噪声偏差(noise scale w),以控制音素长短", value=0.668)
|
157 |
+
input6 = gr.Slider(minimum=0.1, maximum=10, label="duration", value=1)
|
158 |
+
btnVC = gr.Button("Submit")
|
159 |
+
output1 = gr.Audio(label="采样率22050")
|
160 |
+
|
161 |
+
btnVC.click(tts_fn, inputs=[input1, input2, input4, input5, input6], outputs=[output1])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
162 |
app.launch()
|
attentions.py
CHANGED
@@ -1,300 +1,392 @@
|
|
1 |
import math
|
|
|
2 |
import torch
|
3 |
from torch import nn
|
4 |
from torch.nn import functional as F
|
5 |
|
6 |
import commons
|
7 |
from modules import LayerNorm
|
8 |
-
|
9 |
|
10 |
class Encoder(nn.Module):
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
|
47 |
class Decoder(nn.Module):
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
x: decoder input
|
77 |
h: encoder output
|
78 |
"""
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
|
|
96 |
|
97 |
|
98 |
class MultiHeadAttention(nn.Module):
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
scores =
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
180 |
x: [b, h, l, m]
|
181 |
y: [h or 1, m, d]
|
182 |
ret: [b, h, l, d]
|
183 |
"""
|
184 |
-
|
185 |
-
|
186 |
|
187 |
-
|
188 |
-
|
189 |
x: [b, h, l, d]
|
190 |
y: [h or 1, m, d]
|
191 |
ret: [b, h, l, m]
|
192 |
"""
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
|
|
|
|
|
|
213 |
x: [b, h, l, 2*l-1]
|
214 |
ret: [b, h, l, l]
|
215 |
"""
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
|
|
|
|
|
|
|
|
230 |
x: [b, h, l, l]
|
231 |
ret: [b, h, l, 2*l-1]
|
232 |
"""
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
|
|
|
|
|
|
|
|
244 |
Args:
|
245 |
length: an integer scalar.
|
246 |
Returns:
|
247 |
a Tensor with shape [1, 1, length, length]
|
248 |
"""
|
249 |
-
|
250 |
-
|
251 |
-
|
|
|
252 |
|
253 |
|
254 |
class FFN(nn.Module):
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import math
|
2 |
+
|
3 |
import torch
|
4 |
from torch import nn
|
5 |
from torch.nn import functional as F
|
6 |
|
7 |
import commons
|
8 |
from modules import LayerNorm
|
9 |
+
|
10 |
|
11 |
class Encoder(nn.Module):
|
12 |
+
def __init__(self,
|
13 |
+
hidden_channels,
|
14 |
+
filter_channels,
|
15 |
+
n_heads,
|
16 |
+
n_layers,
|
17 |
+
kernel_size=1,
|
18 |
+
p_dropout=0.,
|
19 |
+
window_size=4,
|
20 |
+
**kwargs):
|
21 |
+
super().__init__()
|
22 |
+
self.hidden_channels = hidden_channels
|
23 |
+
self.filter_channels = filter_channels
|
24 |
+
self.n_heads = n_heads
|
25 |
+
self.n_layers = n_layers
|
26 |
+
self.kernel_size = kernel_size
|
27 |
+
self.p_dropout = p_dropout
|
28 |
+
self.window_size = window_size
|
29 |
+
|
30 |
+
self.drop = nn.Dropout(p_dropout)
|
31 |
+
self.attn_layers = nn.ModuleList()
|
32 |
+
self.norm_layers_1 = nn.ModuleList()
|
33 |
+
self.ffn_layers = nn.ModuleList()
|
34 |
+
self.norm_layers_2 = nn.ModuleList()
|
35 |
+
for i in range(self.n_layers):
|
36 |
+
self.attn_layers.append(
|
37 |
+
MultiHeadAttention(hidden_channels,
|
38 |
+
hidden_channels,
|
39 |
+
n_heads,
|
40 |
+
p_dropout=p_dropout,
|
41 |
+
window_size=window_size))
|
42 |
+
self.norm_layers_1.append(LayerNorm(hidden_channels))
|
43 |
+
self.ffn_layers.append(
|
44 |
+
FFN(hidden_channels,
|
45 |
+
hidden_channels,
|
46 |
+
filter_channels,
|
47 |
+
kernel_size,
|
48 |
+
p_dropout=p_dropout))
|
49 |
+
self.norm_layers_2.append(LayerNorm(hidden_channels))
|
50 |
+
|
51 |
+
def forward(self, x, x_mask):
|
52 |
+
attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
|
53 |
+
x = x * x_mask
|
54 |
+
for i in range(self.n_layers):
|
55 |
+
y = self.attn_layers[i](x, x, attn_mask)
|
56 |
+
y = self.drop(y)
|
57 |
+
x = self.norm_layers_1[i](x + y)
|
58 |
+
|
59 |
+
y = self.ffn_layers[i](x, x_mask)
|
60 |
+
y = self.drop(y)
|
61 |
+
x = self.norm_layers_2[i](x + y)
|
62 |
+
x = x * x_mask
|
63 |
+
return x
|
64 |
|
65 |
|
66 |
class Decoder(nn.Module):
|
67 |
+
def __init__(self,
|
68 |
+
hidden_channels,
|
69 |
+
filter_channels,
|
70 |
+
n_heads,
|
71 |
+
n_layers,
|
72 |
+
kernel_size=1,
|
73 |
+
p_dropout=0.,
|
74 |
+
proximal_bias=False,
|
75 |
+
proximal_init=True,
|
76 |
+
**kwargs):
|
77 |
+
super().__init__()
|
78 |
+
self.hidden_channels = hidden_channels
|
79 |
+
self.filter_channels = filter_channels
|
80 |
+
self.n_heads = n_heads
|
81 |
+
self.n_layers = n_layers
|
82 |
+
self.kernel_size = kernel_size
|
83 |
+
self.p_dropout = p_dropout
|
84 |
+
self.proximal_bias = proximal_bias
|
85 |
+
self.proximal_init = proximal_init
|
86 |
+
|
87 |
+
self.drop = nn.Dropout(p_dropout)
|
88 |
+
self.self_attn_layers = nn.ModuleList()
|
89 |
+
self.norm_layers_0 = nn.ModuleList()
|
90 |
+
self.encdec_attn_layers = nn.ModuleList()
|
91 |
+
self.norm_layers_1 = nn.ModuleList()
|
92 |
+
self.ffn_layers = nn.ModuleList()
|
93 |
+
self.norm_layers_2 = nn.ModuleList()
|
94 |
+
for i in range(self.n_layers):
|
95 |
+
self.self_attn_layers.append(
|
96 |
+
MultiHeadAttention(hidden_channels,
|
97 |
+
hidden_channels,
|
98 |
+
n_heads,
|
99 |
+
p_dropout=p_dropout,
|
100 |
+
proximal_bias=proximal_bias,
|
101 |
+
proximal_init=proximal_init))
|
102 |
+
self.norm_layers_0.append(LayerNorm(hidden_channels))
|
103 |
+
self.encdec_attn_layers.append(
|
104 |
+
MultiHeadAttention(hidden_channels,
|
105 |
+
hidden_channels,
|
106 |
+
n_heads,
|
107 |
+
p_dropout=p_dropout))
|
108 |
+
self.norm_layers_1.append(LayerNorm(hidden_channels))
|
109 |
+
self.ffn_layers.append(
|
110 |
+
FFN(hidden_channels,
|
111 |
+
hidden_channels,
|
112 |
+
filter_channels,
|
113 |
+
kernel_size,
|
114 |
+
p_dropout=p_dropout,
|
115 |
+
causal=True))
|
116 |
+
self.norm_layers_2.append(LayerNorm(hidden_channels))
|
117 |
+
|
118 |
+
def forward(self, x, x_mask, h, h_mask):
|
119 |
+
"""
|
120 |
x: decoder input
|
121 |
h: encoder output
|
122 |
"""
|
123 |
+
self_attn_mask = commons.subsequent_mask(x_mask.size(2)).to(
|
124 |
+
device=x.device, dtype=x.dtype)
|
125 |
+
encdec_attn_mask = h_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
|
126 |
+
x = x * x_mask
|
127 |
+
for i in range(self.n_layers):
|
128 |
+
y = self.self_attn_layers[i](x, x, self_attn_mask)
|
129 |
+
y = self.drop(y)
|
130 |
+
x = self.norm_layers_0[i](x + y)
|
131 |
+
|
132 |
+
y = self.encdec_attn_layers[i](x, h, encdec_attn_mask)
|
133 |
+
y = self.drop(y)
|
134 |
+
x = self.norm_layers_1[i](x + y)
|
135 |
+
|
136 |
+
y = self.ffn_layers[i](x, x_mask)
|
137 |
+
y = self.drop(y)
|
138 |
+
x = self.norm_layers_2[i](x + y)
|
139 |
+
x = x * x_mask
|
140 |
+
return x
|
141 |
|
142 |
|
143 |
class MultiHeadAttention(nn.Module):
|
144 |
+
def __init__(self,
|
145 |
+
channels,
|
146 |
+
out_channels,
|
147 |
+
n_heads,
|
148 |
+
p_dropout=0.,
|
149 |
+
window_size=None,
|
150 |
+
heads_share=True,
|
151 |
+
block_length=None,
|
152 |
+
proximal_bias=False,
|
153 |
+
proximal_init=False):
|
154 |
+
super().__init__()
|
155 |
+
assert channels % n_heads == 0
|
156 |
+
|
157 |
+
self.channels = channels
|
158 |
+
self.out_channels = out_channels
|
159 |
+
self.n_heads = n_heads
|
160 |
+
self.p_dropout = p_dropout
|
161 |
+
self.window_size = window_size
|
162 |
+
self.heads_share = heads_share
|
163 |
+
self.block_length = block_length
|
164 |
+
self.proximal_bias = proximal_bias
|
165 |
+
self.proximal_init = proximal_init
|
166 |
+
self.attn = None
|
167 |
+
|
168 |
+
self.k_channels = channels // n_heads
|
169 |
+
self.conv_q = nn.Conv1d(channels, channels, 1)
|
170 |
+
self.conv_k = nn.Conv1d(channels, channels, 1)
|
171 |
+
self.conv_v = nn.Conv1d(channels, channels, 1)
|
172 |
+
self.conv_o = nn.Conv1d(channels, out_channels, 1)
|
173 |
+
self.drop = nn.Dropout(p_dropout)
|
174 |
+
|
175 |
+
if window_size is not None:
|
176 |
+
n_heads_rel = 1 if heads_share else n_heads
|
177 |
+
rel_stddev = self.k_channels**-0.5
|
178 |
+
self.emb_rel_k = nn.Parameter(
|
179 |
+
torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels)
|
180 |
+
* rel_stddev)
|
181 |
+
self.emb_rel_v = nn.Parameter(
|
182 |
+
torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels)
|
183 |
+
* rel_stddev)
|
184 |
+
|
185 |
+
nn.init.xavier_uniform_(self.conv_q.weight)
|
186 |
+
nn.init.xavier_uniform_(self.conv_k.weight)
|
187 |
+
nn.init.xavier_uniform_(self.conv_v.weight)
|
188 |
+
if proximal_init:
|
189 |
+
with torch.no_grad():
|
190 |
+
self.conv_k.weight.copy_(self.conv_q.weight)
|
191 |
+
self.conv_k.bias.copy_(self.conv_q.bias)
|
192 |
+
|
193 |
+
def forward(self, x, c, attn_mask=None):
|
194 |
+
q = self.conv_q(x)
|
195 |
+
k = self.conv_k(c)
|
196 |
+
v = self.conv_v(c)
|
197 |
+
|
198 |
+
x, self.attn = self.attention(q, k, v, mask=attn_mask)
|
199 |
+
|
200 |
+
x = self.conv_o(x)
|
201 |
+
return x
|
202 |
+
|
203 |
+
def attention(self, query, key, value, mask=None):
|
204 |
+
# reshape [b, d, t] -> [b, n_h, t, d_k]
|
205 |
+
b, d, t_s, t_t = (*key.size(), query.size(2))
|
206 |
+
query = query.view(b, self.n_heads, self.k_channels,
|
207 |
+
t_t).transpose(2, 3)
|
208 |
+
key = key.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
|
209 |
+
value = value.view(b, self.n_heads, self.k_channels,
|
210 |
+
t_s).transpose(2, 3)
|
211 |
+
|
212 |
+
scores = torch.matmul(query / math.sqrt(self.k_channels),
|
213 |
+
key.transpose(-2, -1))
|
214 |
+
if self.window_size is not None:
|
215 |
+
msg = "Relative attention is only available for self-attention."
|
216 |
+
assert t_s == t_t, msg
|
217 |
+
key_relative_embeddings = self._get_relative_embeddings(
|
218 |
+
self.emb_rel_k, t_s)
|
219 |
+
rel_logits = self._matmul_with_relative_keys(
|
220 |
+
query / math.sqrt(self.k_channels), key_relative_embeddings)
|
221 |
+
scores_local = self._relative_position_to_absolute_position(
|
222 |
+
rel_logits)
|
223 |
+
scores = scores + scores_local
|
224 |
+
if self.proximal_bias:
|
225 |
+
msg = "Proximal bias is only available for self-attention."
|
226 |
+
assert t_s == t_t, msg
|
227 |
+
scores = scores + self._attention_bias_proximal(t_s).to(
|
228 |
+
device=scores.device, dtype=scores.dtype)
|
229 |
+
if mask is not None:
|
230 |
+
scores = scores.masked_fill(mask == 0, -1e4)
|
231 |
+
if self.block_length is not None:
|
232 |
+
msg = "Local attention is only available for self-attention."
|
233 |
+
assert t_s == t_t, msg
|
234 |
+
block_mask = torch.ones_like(scores).triu(
|
235 |
+
-self.block_length).tril(self.block_length)
|
236 |
+
scores = scores.masked_fill(block_mask == 0, -1e4)
|
237 |
+
p_attn = F.softmax(scores, dim=-1) # [b, n_h, t_t, t_s]
|
238 |
+
p_attn = self.drop(p_attn)
|
239 |
+
output = torch.matmul(p_attn, value)
|
240 |
+
if self.window_size is not None:
|
241 |
+
relative_weights = self._absolute_position_to_relative_position(
|
242 |
+
p_attn)
|
243 |
+
value_relative_embeddings = self._get_relative_embeddings(
|
244 |
+
self.emb_rel_v, t_s)
|
245 |
+
output = output + self._matmul_with_relative_values(
|
246 |
+
relative_weights, value_relative_embeddings)
|
247 |
+
output = output.transpose(2, 3).contiguous().view(
|
248 |
+
b, d, t_t) # [b, n_h, t_t, d_k] -> [b, d, t_t]
|
249 |
+
return output, p_attn
|
250 |
+
|
251 |
+
def _matmul_with_relative_values(self, x, y):
|
252 |
+
"""
|
253 |
x: [b, h, l, m]
|
254 |
y: [h or 1, m, d]
|
255 |
ret: [b, h, l, d]
|
256 |
"""
|
257 |
+
ret = torch.matmul(x, y.unsqueeze(0))
|
258 |
+
return ret
|
259 |
|
260 |
+
def _matmul_with_relative_keys(self, x, y):
|
261 |
+
"""
|
262 |
x: [b, h, l, d]
|
263 |
y: [h or 1, m, d]
|
264 |
ret: [b, h, l, m]
|
265 |
"""
|
266 |
+
ret = torch.matmul(x, y.unsqueeze(0).transpose(-2, -1))
|
267 |
+
return ret
|
268 |
+
|
269 |
+
def _get_relative_embeddings(self, relative_embeddings, length):
|
270 |
+
max_relative_position = 2 * self.window_size + 1
|
271 |
+
# Pad first before slice to avoid using cond ops.
|
272 |
+
pad_length = max(length - (self.window_size + 1), 0)
|
273 |
+
slice_start_position = max((self.window_size + 1) - length, 0)
|
274 |
+
slice_end_position = slice_start_position + 2 * length - 1
|
275 |
+
if pad_length > 0:
|
276 |
+
padded_relative_embeddings = F.pad(
|
277 |
+
relative_embeddings,
|
278 |
+
commons.convert_pad_shape([[0, 0], [pad_length, pad_length],
|
279 |
+
[0, 0]]))
|
280 |
+
else:
|
281 |
+
padded_relative_embeddings = relative_embeddings
|
282 |
+
used_relative_embeddings = padded_relative_embeddings[:,
|
283 |
+
slice_start_position:
|
284 |
+
slice_end_position]
|
285 |
+
return used_relative_embeddings
|
286 |
+
|
287 |
+
def _relative_position_to_absolute_position(self, x):
|
288 |
+
"""
|
289 |
x: [b, h, l, 2*l-1]
|
290 |
ret: [b, h, l, l]
|
291 |
"""
|
292 |
+
batch, heads, length, _ = x.size()
|
293 |
+
# Concat columns of pad to shift from relative to absolute indexing.
|
294 |
+
x = F.pad(x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0,
|
295 |
+
1]]))
|
296 |
+
|
297 |
+
# Concat extra elements so to add up to shape (len+1, 2*len-1).
|
298 |
+
x_flat = x.view([batch, heads, length * 2 * length])
|
299 |
+
x_flat = F.pad(
|
300 |
+
x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [0,
|
301 |
+
length - 1]]))
|
302 |
+
|
303 |
+
# Reshape and slice out the padded elements.
|
304 |
+
x_final = x_flat.view([batch, heads, length + 1,
|
305 |
+
2 * length - 1])[:, :, :length, length - 1:]
|
306 |
+
return x_final
|
307 |
+
|
308 |
+
def _absolute_position_to_relative_position(self, x):
|
309 |
+
"""
|
310 |
x: [b, h, l, l]
|
311 |
ret: [b, h, l, 2*l-1]
|
312 |
"""
|
313 |
+
batch, heads, length, _ = x.size()
|
314 |
+
# padd along column
|
315 |
+
x = F.pad(
|
316 |
+
x,
|
317 |
+
commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0,
|
318 |
+
length - 1]]))
|
319 |
+
x_flat = x.view([batch, heads, length**2 + length * (length - 1)])
|
320 |
+
# add 0's in the beginning that will skew the elements after reshape
|
321 |
+
x_flat = F.pad(
|
322 |
+
x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [length, 0]]))
|
323 |
+
x_final = x_flat.view([batch, heads, length, 2 * length])[:, :, :, 1:]
|
324 |
+
return x_final
|
325 |
+
|
326 |
+
def _attention_bias_proximal(self, length):
|
327 |
+
"""Bias for self-attention to encourage attention to close positions.
|
328 |
Args:
|
329 |
length: an integer scalar.
|
330 |
Returns:
|
331 |
a Tensor with shape [1, 1, length, length]
|
332 |
"""
|
333 |
+
r = torch.arange(length, dtype=torch.float32)
|
334 |
+
diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1)
|
335 |
+
return torch.unsqueeze(
|
336 |
+
torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0)
|
337 |
|
338 |
|
339 |
class FFN(nn.Module):
|
340 |
+
def __init__(self,
|
341 |
+
in_channels,
|
342 |
+
out_channels,
|
343 |
+
filter_channels,
|
344 |
+
kernel_size,
|
345 |
+
p_dropout=0.,
|
346 |
+
activation=None,
|
347 |
+
causal=False):
|
348 |
+
super().__init__()
|
349 |
+
self.in_channels = in_channels
|
350 |
+
self.out_channels = out_channels
|
351 |
+
self.filter_channels = filter_channels
|
352 |
+
self.kernel_size = kernel_size
|
353 |
+
self.p_dropout = p_dropout
|
354 |
+
self.activation = activation
|
355 |
+
self.causal = causal
|
356 |
+
|
357 |
+
if causal:
|
358 |
+
self.padding = self._causal_padding
|
359 |
+
else:
|
360 |
+
self.padding = self._same_padding
|
361 |
+
|
362 |
+
self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size)
|
363 |
+
self.conv_2 = nn.Conv1d(filter_channels, out_channels, kernel_size)
|
364 |
+
self.drop = nn.Dropout(p_dropout)
|
365 |
+
|
366 |
+
def forward(self, x, x_mask):
|
367 |
+
x = self.conv_1(self.padding(x * x_mask))
|
368 |
+
if self.activation == "gelu":
|
369 |
+
x = x * torch.sigmoid(1.702 * x)
|
370 |
+
else:
|
371 |
+
x = torch.relu(x)
|
372 |
+
x = self.drop(x)
|
373 |
+
x = self.conv_2(self.padding(x * x_mask))
|
374 |
+
return x * x_mask
|
375 |
+
|
376 |
+
def _causal_padding(self, x):
|
377 |
+
if self.kernel_size == 1:
|
378 |
+
return x
|
379 |
+
pad_l = self.kernel_size - 1
|
380 |
+
pad_r = 0
|
381 |
+
padding = [[0, 0], [0, 0], [pad_l, pad_r]]
|
382 |
+
x = F.pad(x, commons.convert_pad_shape(padding))
|
383 |
+
return x
|
384 |
+
|
385 |
+
def _same_padding(self, x):
|
386 |
+
if self.kernel_size == 1:
|
387 |
+
return x
|
388 |
+
pad_l = (self.kernel_size - 1) // 2
|
389 |
+
pad_r = self.kernel_size // 2
|
390 |
+
padding = [[0, 0], [0, 0], [pad_l, pad_r]]
|
391 |
+
x = F.pad(x, commons.convert_pad_shape(padding))
|
392 |
+
return x
|
checkpoints/Default/config.json
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"train": {
|
3 |
+
"log_interval": 200,
|
4 |
+
"eval_interval": 1000,
|
5 |
+
"seed": 1234,
|
6 |
+
"epochs": 10000,
|
7 |
+
"learning_rate": 2e-4,
|
8 |
+
"betas": [0.8, 0.99],
|
9 |
+
"eps": 1e-9,
|
10 |
+
"batch_size": 32,
|
11 |
+
"fp16_run": true,
|
12 |
+
"lr_decay": 0.999875,
|
13 |
+
"segment_size": 8192,
|
14 |
+
"init_lr_ratio": 1,
|
15 |
+
"warmup_epochs": 0,
|
16 |
+
"c_mel": 45,
|
17 |
+
"c_kl": 1.0
|
18 |
+
},
|
19 |
+
"data": {
|
20 |
+
"training_files":"/www/training/dataset/train_with_paimeng2.txt",
|
21 |
+
"validation_files":"/www/training/dataset/val_filelist.txt",
|
22 |
+
"text_cleaners":["cjke_cleaners"],
|
23 |
+
"max_wav_value": 32768.0,
|
24 |
+
"sampling_rate": 22050,
|
25 |
+
"filter_length": 1024,
|
26 |
+
"hop_length": 256,
|
27 |
+
"win_length": 1024,
|
28 |
+
"n_mel_channels": 80,
|
29 |
+
"mel_fmin": 0.0,
|
30 |
+
"mel_fmax": null,
|
31 |
+
"add_blank": true,
|
32 |
+
"n_speakers": 50,
|
33 |
+
"cleaned_text": true
|
34 |
+
},
|
35 |
+
"model": {
|
36 |
+
"inter_channels": 192,
|
37 |
+
"hidden_channels": 192,
|
38 |
+
"filter_channels": 768,
|
39 |
+
"n_heads": 2,
|
40 |
+
"n_layers": 6,
|
41 |
+
"kernel_size": 3,
|
42 |
+
"p_dropout": 0.1,
|
43 |
+
"resblock": "1",
|
44 |
+
"resblock_kernel_sizes": [3,7,11],
|
45 |
+
"resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]],
|
46 |
+
"upsample_rates": [8,8,2,2],
|
47 |
+
"upsample_initial_channel": 512,
|
48 |
+
"upsample_kernel_sizes": [16,16,4,4],
|
49 |
+
"n_layers_q": 3,
|
50 |
+
"use_spectral_norm": false,
|
51 |
+
"gin_channels": 256
|
52 |
+
},
|
53 |
+
"symbols": ["_", ",", ".", "!", "?", "-", "~", "\u2026", "A", "E", "I", "N", "O", "Q", "U", "a", "b", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "r", "s", "t", "u", "v", "w", "y", "z", "\u0283", "\u02a7", "\u02a6", "\u026f", "\u0279", "\u0259", "\u0265", "\u207c", "\u02b0", "`", "\u2192", "\u2193", "\u2191", " "]
|
54 |
+
}
|
checkpoints/Default/model.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6008ba1612a7e6fbefbdd633d07d6e8db07bebf6bcf1a4bb803e1dff636c5fcb
|
3 |
+
size 120734883
|
checkpoints/NIjigasaki/config.json
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"train": {
|
3 |
+
"log_interval": 200,
|
4 |
+
"eval_interval": 1000,
|
5 |
+
"seed": 1234,
|
6 |
+
"epochs": 10000,
|
7 |
+
"learning_rate": 2e-4,
|
8 |
+
"betas": [0.8, 0.99],
|
9 |
+
"eps": 1e-9,
|
10 |
+
"batch_size": 32,
|
11 |
+
"fp16_run": true,
|
12 |
+
"lr_decay": 0.999875,
|
13 |
+
"segment_size": 8192,
|
14 |
+
"init_lr_ratio": 1,
|
15 |
+
"warmup_epochs": 0,
|
16 |
+
"c_mel": 45,
|
17 |
+
"c_kl": 1.0
|
18 |
+
},
|
19 |
+
"data": {
|
20 |
+
"training_files":"/www/training/dataset/train_with_paimeng2.txt",
|
21 |
+
"validation_files":"/www/training/dataset/val_filelist.txt",
|
22 |
+
"text_cleaners":["cjke_cleaners"],
|
23 |
+
"max_wav_value": 32768.0,
|
24 |
+
"sampling_rate": 22050,
|
25 |
+
"filter_length": 1024,
|
26 |
+
"hop_length": 256,
|
27 |
+
"win_length": 1024,
|
28 |
+
"n_mel_channels": 80,
|
29 |
+
"mel_fmin": 0.0,
|
30 |
+
"mel_fmax": null,
|
31 |
+
"add_blank": true,
|
32 |
+
"n_speakers": 50,
|
33 |
+
"cleaned_text": true
|
34 |
+
},
|
35 |
+
"model": {
|
36 |
+
"inter_channels": 192,
|
37 |
+
"hidden_channels": 192,
|
38 |
+
"filter_channels": 768,
|
39 |
+
"n_heads": 2,
|
40 |
+
"n_layers": 6,
|
41 |
+
"kernel_size": 3,
|
42 |
+
"p_dropout": 0.1,
|
43 |
+
"resblock": "1",
|
44 |
+
"resblock_kernel_sizes": [3,7,11],
|
45 |
+
"resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]],
|
46 |
+
"upsample_rates": [8,8,2,2],
|
47 |
+
"upsample_initial_channel": 512,
|
48 |
+
"upsample_kernel_sizes": [16,16,4,4],
|
49 |
+
"n_layers_q": 3,
|
50 |
+
"use_spectral_norm": false,
|
51 |
+
"gin_channels": 256
|
52 |
+
},
|
53 |
+
"symbols": ["_", ",", ".", "!", "?", "-", "~", "\u2026", "A", "E", "I", "N", "O", "Q", "U", "a", "b", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "r", "s", "t", "u", "v", "w", "y", "z", "\u0283", "\u02a7", "\u02a6", "\u026f", "\u0279", "\u0259", "\u0265", "\u207c", "\u02b0", "`", "\u2192", "\u2193", "\u2191", " "]
|
54 |
+
}
|
checkpoints/NIjigasaki/model.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bcdfabd68e081f0b9b0b2ac7600fd6d6124102607718680fcd8611cee9d5a2da
|
3 |
+
size 120734883
|
checkpoints/ShojoKageki/model.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6008ba1612a7e6fbefbdd633d07d6e8db07bebf6bcf1a4bb803e1dff636c5fcb
|
3 |
+
size 120734883
|
checkpoints/Starlight/config.json
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"train": {
|
3 |
+
"log_interval": 200,
|
4 |
+
"eval_interval": 1000,
|
5 |
+
"seed": 1234,
|
6 |
+
"epochs": 10000,
|
7 |
+
"learning_rate": 2e-4,
|
8 |
+
"betas": [0.8, 0.99],
|
9 |
+
"eps": 1e-9,
|
10 |
+
"batch_size": 32,
|
11 |
+
"fp16_run": true,
|
12 |
+
"lr_decay": 0.999875,
|
13 |
+
"segment_size": 8192,
|
14 |
+
"init_lr_ratio": 1,
|
15 |
+
"warmup_epochs": 0,
|
16 |
+
"c_mel": 45,
|
17 |
+
"c_kl": 1.0
|
18 |
+
},
|
19 |
+
"data": {
|
20 |
+
"training_files":"/www/training/dataset/train_with_paimeng2.txt",
|
21 |
+
"validation_files":"/www/training/dataset/val_filelist.txt",
|
22 |
+
"text_cleaners":["cjke_cleaners"],
|
23 |
+
"max_wav_value": 32768.0,
|
24 |
+
"sampling_rate": 22050,
|
25 |
+
"filter_length": 1024,
|
26 |
+
"hop_length": 256,
|
27 |
+
"win_length": 1024,
|
28 |
+
"n_mel_channels": 80,
|
29 |
+
"mel_fmin": 0.0,
|
30 |
+
"mel_fmax": null,
|
31 |
+
"add_blank": true,
|
32 |
+
"n_speakers": 50,
|
33 |
+
"cleaned_text": true
|
34 |
+
},
|
35 |
+
"model": {
|
36 |
+
"inter_channels": 192,
|
37 |
+
"hidden_channels": 192,
|
38 |
+
"filter_channels": 768,
|
39 |
+
"n_heads": 2,
|
40 |
+
"n_layers": 6,
|
41 |
+
"kernel_size": 3,
|
42 |
+
"p_dropout": 0.1,
|
43 |
+
"resblock": "1",
|
44 |
+
"resblock_kernel_sizes": [3,7,11],
|
45 |
+
"resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]],
|
46 |
+
"upsample_rates": [8,8,2,2],
|
47 |
+
"upsample_initial_channel": 512,
|
48 |
+
"upsample_kernel_sizes": [16,16,4,4],
|
49 |
+
"n_layers_q": 3,
|
50 |
+
"use_spectral_norm": false,
|
51 |
+
"gin_channels": 256
|
52 |
+
},
|
53 |
+
"symbols": ["_", ",", ".", "!", "?", "-", "~", "\u2026", "A", "E", "I", "N", "O", "Q", "U", "a", "b", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "r", "s", "t", "u", "v", "w", "y", "z", "\u0283", "\u02a7", "\u02a6", "\u026f", "\u0279", "\u0259", "\u0265", "\u207c", "\u02b0", "`", "\u2192", "\u2193", "\u2191", " "]
|
54 |
+
}
|
checkpoints/Starlight/model.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3657d9607364481af521ce67ca1d6a3d3e710b28dca7d2c2bbe19f44b3b67e4a
|
3 |
+
size 120734883
|
checkpoints/info.json
CHANGED
@@ -167,10 +167,10 @@
|
|
167 |
"name": "高咲侑"
|
168 |
}
|
169 |
},
|
170 |
-
"checkpoint": "checkpoints/
|
171 |
|
172 |
},
|
173 |
-
"
|
174 |
"speakers":{
|
175 |
"華恋":{
|
176 |
"sid": 21,
|
@@ -288,7 +288,7 @@
|
|
288 |
"name": "墨小菊"
|
289 |
}
|
290 |
},
|
291 |
-
"checkpoint": "checkpoints/ShojoKageki/model.
|
292 |
},
|
293 |
"Nijigasaki":{
|
294 |
"speakers":{
|
@@ -353,72 +353,6 @@
|
|
353 |
"name": "高咲侑"
|
354 |
}
|
355 |
},
|
356 |
-
"checkpoint": "checkpoints/
|
357 |
-
},
|
358 |
-
"Nijigasaki-biaobei":{
|
359 |
-
"speakers":{
|
360 |
-
"歩夢":{
|
361 |
-
"sid": 1,
|
362 |
-
"speech": "みなさん、はじめまして。上原歩夢です。",
|
363 |
-
"name": "歩夢"
|
364 |
-
},
|
365 |
-
"かすみ":{
|
366 |
-
"sid": 2,
|
367 |
-
"speech": "みんなのアイドルかすみんだよー。",
|
368 |
-
"name": "かすみ"
|
369 |
-
},
|
370 |
-
"しずく":{
|
371 |
-
"sid": 3,
|
372 |
-
"speech": "みなさん、こんにちは。しずくです。",
|
373 |
-
"name": "しずく"
|
374 |
-
},
|
375 |
-
"果林":{
|
376 |
-
"sid": 4,
|
377 |
-
"speech": "ハーイ。 朝香果林よ。よろしくね",
|
378 |
-
"name": "果林"
|
379 |
-
},
|
380 |
-
"愛":{
|
381 |
-
"sid": 5,
|
382 |
-
"speech": "ちっすー。アタシは愛。",
|
383 |
-
"name": "愛"
|
384 |
-
},
|
385 |
-
"せつ菜":{
|
386 |
-
"sid": 7,
|
387 |
-
"speech": "絶えぬ命は,常世に在らず。終わらぬ芝居も,夢幻のごとく。儚く燃えゆく,さだめであれば。舞台に刻まん,刹那の瞬き。",
|
388 |
-
"name": "せつ菜"
|
389 |
-
},
|
390 |
-
"エマ":{
|
391 |
-
"sid": 8,
|
392 |
-
"speech": "こんにちは、エマです。自然溢れるスイスからやってきましたっ。",
|
393 |
-
"name": "エマ"
|
394 |
-
},
|
395 |
-
"璃奈":{
|
396 |
-
"sid": 9,
|
397 |
-
"speech": "私、天王寺璃奈。とってもきゅーとな女の子。ホントだよ?",
|
398 |
-
"name": "璃奈"
|
399 |
-
},
|
400 |
-
"栞子":{
|
401 |
-
"sid": 10,
|
402 |
-
"speech": "みなさん、初めまして。三船栞子と申します。",
|
403 |
-
"name": "栞子"
|
404 |
-
},
|
405 |
-
"ランジュ":{
|
406 |
-
"sid": 11,
|
407 |
-
"speech": "你好啊,我是钟岚珠。",
|
408 |
-
"name": "ランジュ"
|
409 |
-
},
|
410 |
-
"ミア":{
|
411 |
-
"sid": 12,
|
412 |
-
"speech": "ボクはミア・テイラー。",
|
413 |
-
"name": "ミア"
|
414 |
-
},
|
415 |
-
"高咲侑":{
|
416 |
-
"sid": 0,
|
417 |
-
"speech": "只选一个做不到啊",
|
418 |
-
"name": "高咲侑"
|
419 |
-
}
|
420 |
-
},
|
421 |
-
"checkpoint": "checkpoints/biaobei/model.pth"
|
422 |
}
|
423 |
-
|
424 |
}
|
|
|
167 |
"name": "高咲侑"
|
168 |
}
|
169 |
},
|
170 |
+
"checkpoint": "checkpoints/Default/model.onnx"
|
171 |
|
172 |
},
|
173 |
+
"ShojoKageki":{
|
174 |
"speakers":{
|
175 |
"華恋":{
|
176 |
"sid": 21,
|
|
|
288 |
"name": "墨小菊"
|
289 |
}
|
290 |
},
|
291 |
+
"checkpoint": "checkpoints/ShojoKageki/model.onnx"
|
292 |
},
|
293 |
"Nijigasaki":{
|
294 |
"speakers":{
|
|
|
353 |
"name": "高咲侑"
|
354 |
}
|
355 |
},
|
356 |
+
"checkpoint": "checkpoints/NIjigasaki/model.onnx"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
357 |
}
|
|
|
358 |
}
|
cleaners/JapaneseCleaner.dll
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a659eb68d12d4a88ef7dfde6086b9974cd4d43634f7e4bfe710d5537cdd61a75
|
3 |
+
size 3097600
|
cleaners/char.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:888ee94c5a8a7a26d24ab3f1b7155441351954fd51ea06b4a2f78bd742492b2f
|
3 |
+
size 262496
|
cleaners/matrix.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:62fd16b4f64c851d5dc352ef0d5740c5fc83ddc7c203b2b0b1fc5271969a14ce
|
3 |
+
size 3792262
|
cleaners/sys.dic
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ca57d9029691a70a5dfb99afc2844180256161d7130da65b1a867510e129b9a6
|
3 |
+
size 103073776
|
cleaners/unk.dic
ADDED
Binary file (5.69 kB). View file
|
|
commons.py
CHANGED
@@ -1,97 +1,161 @@
|
|
1 |
import math
|
|
|
2 |
import torch
|
3 |
from torch.nn import functional as F
|
4 |
-
import torch.jit
|
5 |
|
6 |
|
7 |
-
def
|
8 |
-
|
|
|
|
|
9 |
|
10 |
|
11 |
-
def
|
12 |
-
|
13 |
|
14 |
|
15 |
-
|
16 |
-
|
|
|
17 |
|
18 |
|
19 |
-
def
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
|
24 |
|
25 |
-
def
|
26 |
-
|
|
|
|
|
|
|
|
|
27 |
|
28 |
|
29 |
-
def
|
30 |
-
|
31 |
-
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
|
35 |
def slice_segments(x, ids_str, segment_size=4):
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
|
43 |
|
44 |
def rand_slice_segments(x, x_lengths=None, segment_size=4):
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
|
54 |
def subsequent_mask(length):
|
55 |
-
|
56 |
-
|
57 |
|
58 |
|
59 |
@torch.jit.script
|
60 |
def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
|
68 |
|
69 |
-
def
|
70 |
-
|
71 |
-
|
72 |
-
return pad_shape
|
73 |
|
74 |
|
75 |
def sequence_mask(length, max_length=None):
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
|
81 |
|
82 |
def generate_path(duration, mask):
|
83 |
-
|
84 |
duration: [b, 1, t_x]
|
85 |
mask: [b, 1, t_y, t_x]
|
86 |
"""
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import math
|
2 |
+
|
3 |
import torch
|
4 |
from torch.nn import functional as F
|
|
|
5 |
|
6 |
|
7 |
+
def init_weights(m, mean=0.0, std=0.01):
|
8 |
+
classname = m.__class__.__name__
|
9 |
+
if classname.find("Conv") != -1:
|
10 |
+
m.weight.data.normal_(mean, std)
|
11 |
|
12 |
|
13 |
+
def get_padding(kernel_size, dilation=1):
|
14 |
+
return int((kernel_size * dilation - dilation) / 2)
|
15 |
|
16 |
|
17 |
+
def convert_pad_shape(pad_shape):
|
18 |
+
pad_shape = [item for sublist in reversed(pad_shape) for item in sublist]
|
19 |
+
return pad_shape
|
20 |
|
21 |
|
22 |
+
def intersperse(lst, item):
|
23 |
+
result = [item] * (len(lst) * 2 + 1)
|
24 |
+
result[1::2] = lst
|
25 |
+
return result
|
26 |
|
27 |
|
28 |
+
def kl_divergence(m_p, logs_p, m_q, logs_q):
|
29 |
+
"""KL(P||Q)"""
|
30 |
+
kl = (logs_q - logs_p) - 0.5
|
31 |
+
kl += 0.5 * (torch.exp(2. * logs_p) +
|
32 |
+
((m_p - m_q)**2)) * torch.exp(-2. * logs_q)
|
33 |
+
return kl
|
34 |
|
35 |
|
36 |
+
def rand_gumbel(shape):
|
37 |
+
"""Sample from the Gumbel distribution, protect from overflows."""
|
38 |
+
uniform_samples = torch.rand(shape) * 0.99998 + 0.00001
|
39 |
+
return -torch.log(-torch.log(uniform_samples))
|
40 |
+
|
41 |
+
|
42 |
+
def rand_gumbel_like(x):
|
43 |
+
g = rand_gumbel(x.size()).to(dtype=x.dtype, device=x.device)
|
44 |
+
return g
|
45 |
|
46 |
|
47 |
def slice_segments(x, ids_str, segment_size=4):
|
48 |
+
ret = torch.zeros_like(x[:, :, :segment_size])
|
49 |
+
for i in range(x.size(0)):
|
50 |
+
idx_str = ids_str[i]
|
51 |
+
idx_end = idx_str + segment_size
|
52 |
+
ret[i] = x[i, :, idx_str:idx_end]
|
53 |
+
return ret
|
54 |
|
55 |
|
56 |
def rand_slice_segments(x, x_lengths=None, segment_size=4):
|
57 |
+
b, d, t = x.size()
|
58 |
+
if x_lengths is None:
|
59 |
+
x_lengths = t
|
60 |
+
ids_str_max = x_lengths - segment_size + 1
|
61 |
+
ids_str = (torch.rand([b]).to(device=x.device) *
|
62 |
+
ids_str_max).to(dtype=torch.long)
|
63 |
+
ret = slice_segments(x, ids_str, segment_size)
|
64 |
+
return ret, ids_str
|
65 |
+
|
66 |
+
|
67 |
+
def get_timing_signal_1d(length,
|
68 |
+
channels,
|
69 |
+
min_timescale=1.0,
|
70 |
+
max_timescale=1.0e4):
|
71 |
+
position = torch.arange(length, dtype=torch.float)
|
72 |
+
num_timescales = channels // 2
|
73 |
+
log_timescale_increment = (
|
74 |
+
math.log(float(max_timescale) / float(min_timescale)) /
|
75 |
+
(num_timescales - 1))
|
76 |
+
inv_timescales = min_timescale * torch.exp(
|
77 |
+
torch.arange(num_timescales, dtype=torch.float) *
|
78 |
+
-log_timescale_increment)
|
79 |
+
scaled_time = position.unsqueeze(0) * inv_timescales.unsqueeze(1)
|
80 |
+
signal = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], 0)
|
81 |
+
signal = F.pad(signal, [0, 0, 0, channels % 2])
|
82 |
+
signal = signal.view(1, channels, length)
|
83 |
+
return signal
|
84 |
+
|
85 |
+
|
86 |
+
def add_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4):
|
87 |
+
b, channels, length = x.size()
|
88 |
+
signal = get_timing_signal_1d(length, channels, min_timescale,
|
89 |
+
max_timescale)
|
90 |
+
return x + signal.to(dtype=x.dtype, device=x.device)
|
91 |
+
|
92 |
+
|
93 |
+
def cat_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4, axis=1):
|
94 |
+
b, channels, length = x.size()
|
95 |
+
signal = get_timing_signal_1d(length, channels, min_timescale,
|
96 |
+
max_timescale)
|
97 |
+
return torch.cat([x, signal.to(dtype=x.dtype, device=x.device)], axis)
|
98 |
|
99 |
|
100 |
def subsequent_mask(length):
|
101 |
+
mask = torch.tril(torch.ones(length, length)).unsqueeze(0).unsqueeze(0)
|
102 |
+
return mask
|
103 |
|
104 |
|
105 |
@torch.jit.script
|
106 |
def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
|
107 |
+
n_channels_int = n_channels[0]
|
108 |
+
in_act = input_a + input_b
|
109 |
+
t_act = torch.tanh(in_act[:, :n_channels_int, :])
|
110 |
+
s_act = torch.sigmoid(in_act[:, n_channels_int:, :])
|
111 |
+
acts = t_act * s_act
|
112 |
+
return acts
|
113 |
|
114 |
|
115 |
+
def shift_1d(x):
|
116 |
+
x = F.pad(x, convert_pad_shape([[0, 0], [0, 0], [1, 0]]))[:, :, :-1]
|
117 |
+
return x
|
|
|
118 |
|
119 |
|
120 |
def sequence_mask(length, max_length=None):
|
121 |
+
if max_length is None:
|
122 |
+
max_length = length.max()
|
123 |
+
x = torch.arange(max_length, dtype=length.dtype, device=length.device)
|
124 |
+
return x.unsqueeze(0) < length.unsqueeze(1)
|
125 |
|
126 |
|
127 |
def generate_path(duration, mask):
|
128 |
+
"""
|
129 |
duration: [b, 1, t_x]
|
130 |
mask: [b, 1, t_y, t_x]
|
131 |
"""
|
132 |
+
device = duration.device
|
133 |
+
|
134 |
+
b, _, t_y, t_x = mask.shape
|
135 |
+
cum_duration = torch.cumsum(duration, -1)
|
136 |
+
|
137 |
+
cum_duration_flat = cum_duration.view(b * t_x)
|
138 |
+
path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype)
|
139 |
+
path = path.view(b, t_x, t_y)
|
140 |
+
path = path - F.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]
|
141 |
+
]))[:, :-1]
|
142 |
+
path = path.unsqueeze(1).transpose(2, 3) * mask
|
143 |
+
return path
|
144 |
+
|
145 |
+
|
146 |
+
def clip_grad_value_(parameters, clip_value, norm_type=2):
|
147 |
+
if isinstance(parameters, torch.Tensor):
|
148 |
+
parameters = [parameters]
|
149 |
+
parameters = list(filter(lambda p: p.grad is not None, parameters))
|
150 |
+
norm_type = float(norm_type)
|
151 |
+
if clip_value is not None:
|
152 |
+
clip_value = float(clip_value)
|
153 |
+
|
154 |
+
total_norm = 0
|
155 |
+
for p in parameters:
|
156 |
+
param_norm = p.grad.data.norm(norm_type)
|
157 |
+
total_norm += param_norm.item()**norm_type
|
158 |
+
if clip_value is not None:
|
159 |
+
p.grad.data.clamp_(min=-clip_value, max=clip_value)
|
160 |
+
total_norm = total_norm**(1. / norm_type)
|
161 |
+
return total_norm
|
data_utils.py
ADDED
@@ -0,0 +1,307 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import random
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import torchaudio
|
6 |
+
import torch.utils.data
|
7 |
+
|
8 |
+
import commons
|
9 |
+
from mel_processing import spectrogram_torch
|
10 |
+
from utils import load_filepaths_and_text
|
11 |
+
|
12 |
+
|
13 |
+
class TextAudioSpeakerLoader(torch.utils.data.Dataset):
|
14 |
+
"""
|
15 |
+
1) loads audio, speaker_id, text pairs
|
16 |
+
2) normalizes text and converts them to sequences of integers
|
17 |
+
3) computes spectrograms from audio files.
|
18 |
+
"""
|
19 |
+
def __init__(self, audiopaths_sid_text, hparams):
|
20 |
+
self.audiopaths_sid_text = load_filepaths_and_text(audiopaths_sid_text)
|
21 |
+
# self.text_cleaners = hparams.text_cleaners
|
22 |
+
self.max_wav_value = hparams.max_wav_value
|
23 |
+
self.sampling_rate = hparams.sampling_rate
|
24 |
+
self.filter_length = hparams.filter_length
|
25 |
+
self.hop_length = hparams.hop_length
|
26 |
+
self.win_length = hparams.win_length
|
27 |
+
self.sampling_rate = hparams.sampling_rate
|
28 |
+
self.src_sampling_rate = getattr(hparams, "src_sampling_rate",
|
29 |
+
self.sampling_rate)
|
30 |
+
|
31 |
+
self.cleaned_text = getattr(hparams, "cleaned_text", False)
|
32 |
+
|
33 |
+
self.add_blank = hparams.add_blank
|
34 |
+
self.min_text_len = getattr(hparams, "min_text_len", 1)
|
35 |
+
self.max_text_len = getattr(hparams, "max_text_len", 190)
|
36 |
+
|
37 |
+
phone_file = getattr(hparams, "phone_table", None)
|
38 |
+
self.phone_dict = None
|
39 |
+
if phone_file is not None:
|
40 |
+
self.phone_dict = {}
|
41 |
+
with open(phone_file) as fin:
|
42 |
+
for line in fin:
|
43 |
+
arr = line.strip().split()
|
44 |
+
self.phone_dict[arr[0]] = int(arr[1])
|
45 |
+
|
46 |
+
speaker_file = getattr(hparams, "speaker_table", None)
|
47 |
+
self.speaker_dict = None
|
48 |
+
if speaker_file is not None:
|
49 |
+
self.speaker_dict = {}
|
50 |
+
with open(speaker_file) as fin:
|
51 |
+
for line in fin:
|
52 |
+
arr = line.strip().split()
|
53 |
+
self.speaker_dict[arr[0]] = int(arr[1])
|
54 |
+
|
55 |
+
random.seed(1234)
|
56 |
+
random.shuffle(self.audiopaths_sid_text)
|
57 |
+
self._filter()
|
58 |
+
|
59 |
+
def _filter(self):
|
60 |
+
"""
|
61 |
+
Filter text & store spec lengths
|
62 |
+
"""
|
63 |
+
# Store spectrogram lengths for Bucketing
|
64 |
+
# wav_length ~= file_size / (wav_channels * Bytes per dim) = file_size / (1 * 2)
|
65 |
+
# spec_length = wav_length // hop_length
|
66 |
+
|
67 |
+
audiopaths_sid_text_new = []
|
68 |
+
lengths = []
|
69 |
+
for item in self.audiopaths_sid_text:
|
70 |
+
audiopath = item[0]
|
71 |
+
# filename|text or filename|speaker|text
|
72 |
+
text = item[1] if len(item) == 2 else item[2]
|
73 |
+
if self.min_text_len <= len(text) and len(
|
74 |
+
text) <= self.max_text_len:
|
75 |
+
audiopaths_sid_text_new.append(item)
|
76 |
+
lengths.append(
|
77 |
+
int(
|
78 |
+
os.path.getsize(audiopath) * self.sampling_rate /
|
79 |
+
self.src_sampling_rate) // (2 * self.hop_length))
|
80 |
+
self.audiopaths_sid_text = audiopaths_sid_text_new
|
81 |
+
self.lengths = lengths
|
82 |
+
|
83 |
+
def get_audio_text_speaker_pair(self, audiopath_sid_text):
|
84 |
+
audiopath = audiopath_sid_text[0]
|
85 |
+
if len(audiopath_sid_text) == 2: # filename|text
|
86 |
+
sid = 0
|
87 |
+
text = audiopath_sid_text[1]
|
88 |
+
else: # filename|speaker|text
|
89 |
+
sid = self.speaker_dict[audiopath_sid_text[1]]
|
90 |
+
text = audiopath_sid_text[2]
|
91 |
+
text = self.get_text(text)
|
92 |
+
spec, wav = self.get_audio(audiopath)
|
93 |
+
sid = self.get_sid(sid)
|
94 |
+
return (text, spec, wav, sid)
|
95 |
+
|
96 |
+
def get_audio(self, filename):
|
97 |
+
audio, sampling_rate = torchaudio.load(filename, normalize=False)
|
98 |
+
if sampling_rate != self.sampling_rate:
|
99 |
+
audio = audio.to(torch.float)
|
100 |
+
audio = torchaudio.transforms.Resample(sampling_rate,
|
101 |
+
self.sampling_rate)(audio)
|
102 |
+
audio = audio.to(torch.int16)
|
103 |
+
audio = audio[0] # Get the first channel
|
104 |
+
audio_norm = audio / self.max_wav_value
|
105 |
+
audio_norm = audio_norm.unsqueeze(0)
|
106 |
+
spec = spectrogram_torch(audio_norm,
|
107 |
+
self.filter_length,
|
108 |
+
self.sampling_rate,
|
109 |
+
self.hop_length,
|
110 |
+
self.win_length,
|
111 |
+
center=False)
|
112 |
+
spec = torch.squeeze(spec, 0)
|
113 |
+
return spec, audio_norm
|
114 |
+
|
115 |
+
def get_text(self, text):
|
116 |
+
text_norm = [self.phone_dict[phone] for phone in text.split()]
|
117 |
+
if self.add_blank:
|
118 |
+
text_norm = commons.intersperse(text_norm, 0)
|
119 |
+
text_norm = torch.LongTensor(text_norm)
|
120 |
+
return text_norm
|
121 |
+
|
122 |
+
def get_sid(self, sid):
|
123 |
+
sid = torch.LongTensor([int(sid)])
|
124 |
+
return sid
|
125 |
+
|
126 |
+
def __getitem__(self, index):
|
127 |
+
return self.get_audio_text_speaker_pair(
|
128 |
+
self.audiopaths_sid_text[index])
|
129 |
+
|
130 |
+
def __len__(self):
|
131 |
+
return len(self.audiopaths_sid_text)
|
132 |
+
|
133 |
+
|
134 |
+
class TextAudioSpeakerCollate():
|
135 |
+
""" Zero-pads model inputs and targets
|
136 |
+
"""
|
137 |
+
def __init__(self, return_ids=False):
|
138 |
+
self.return_ids = return_ids
|
139 |
+
|
140 |
+
def __call__(self, batch):
|
141 |
+
"""Collate's training batch from normalized text, audio and speaker identities
|
142 |
+
PARAMS
|
143 |
+
------
|
144 |
+
batch: [text_normalized, spec_normalized, wav_normalized, sid]
|
145 |
+
"""
|
146 |
+
# Right zero-pad all one-hot text sequences to max input length
|
147 |
+
_, ids_sorted_decreasing = torch.sort(torch.LongTensor(
|
148 |
+
[x[1].size(1) for x in batch]),
|
149 |
+
dim=0,
|
150 |
+
descending=True)
|
151 |
+
|
152 |
+
max_text_len = max([len(x[0]) for x in batch])
|
153 |
+
max_spec_len = max([x[1].size(1) for x in batch])
|
154 |
+
max_wav_len = max([x[2].size(1) for x in batch])
|
155 |
+
|
156 |
+
text_lengths = torch.LongTensor(len(batch))
|
157 |
+
spec_lengths = torch.LongTensor(len(batch))
|
158 |
+
wav_lengths = torch.LongTensor(len(batch))
|
159 |
+
sid = torch.LongTensor(len(batch))
|
160 |
+
|
161 |
+
text_padded = torch.LongTensor(len(batch), max_text_len)
|
162 |
+
spec_padded = torch.FloatTensor(len(batch), batch[0][1].size(0),
|
163 |
+
max_spec_len)
|
164 |
+
wav_padded = torch.FloatTensor(len(batch), 1, max_wav_len)
|
165 |
+
text_padded.zero_()
|
166 |
+
spec_padded.zero_()
|
167 |
+
wav_padded.zero_()
|
168 |
+
for i in range(len(ids_sorted_decreasing)):
|
169 |
+
row = batch[ids_sorted_decreasing[i]]
|
170 |
+
|
171 |
+
text = row[0]
|
172 |
+
text_padded[i, :text.size(0)] = text
|
173 |
+
text_lengths[i] = text.size(0)
|
174 |
+
|
175 |
+
spec = row[1]
|
176 |
+
spec_padded[i, :, :spec.size(1)] = spec
|
177 |
+
spec_lengths[i] = spec.size(1)
|
178 |
+
|
179 |
+
wav = row[2]
|
180 |
+
wav_padded[i, :, :wav.size(1)] = wav
|
181 |
+
wav_lengths[i] = wav.size(1)
|
182 |
+
|
183 |
+
sid[i] = row[3]
|
184 |
+
|
185 |
+
if self.return_ids:
|
186 |
+
return (text_padded, text_lengths, spec_padded, spec_lengths,
|
187 |
+
wav_padded, wav_lengths, sid, ids_sorted_decreasing)
|
188 |
+
return (text_padded, text_lengths, spec_padded, spec_lengths,
|
189 |
+
wav_padded, wav_lengths, sid)
|
190 |
+
|
191 |
+
|
192 |
+
class DistributedBucketSampler(torch.utils.data.distributed.DistributedSampler
|
193 |
+
):
|
194 |
+
"""
|
195 |
+
Maintain similar input lengths in a batch.
|
196 |
+
Length groups are specified by boundaries.
|
197 |
+
Ex) boundaries = [b1, b2, b3] -> any batch is included either
|
198 |
+
{x | b1 < length(x) <=b2} or {x | b2 < length(x) <= b3}.
|
199 |
+
|
200 |
+
It removes samples which are not included in the boundaries.
|
201 |
+
Ex) boundaries = [b1, b2, b3] -> any x s.t. length(x) <= b1
|
202 |
+
or length(x) > b3 are discarded.
|
203 |
+
"""
|
204 |
+
def __init__(self,
|
205 |
+
dataset,
|
206 |
+
batch_size,
|
207 |
+
boundaries,
|
208 |
+
num_replicas=None,
|
209 |
+
rank=None,
|
210 |
+
shuffle=True):
|
211 |
+
super().__init__(dataset,
|
212 |
+
num_replicas=num_replicas,
|
213 |
+
rank=rank,
|
214 |
+
shuffle=shuffle)
|
215 |
+
self.lengths = dataset.lengths
|
216 |
+
self.batch_size = batch_size
|
217 |
+
self.boundaries = boundaries
|
218 |
+
|
219 |
+
self.buckets, self.num_samples_per_bucket = self._create_buckets()
|
220 |
+
self.total_size = sum(self.num_samples_per_bucket)
|
221 |
+
self.num_samples = self.total_size // self.num_replicas
|
222 |
+
|
223 |
+
def _create_buckets(self):
|
224 |
+
buckets = [[] for _ in range(len(self.boundaries) - 1)]
|
225 |
+
for i in range(len(self.lengths)):
|
226 |
+
length = self.lengths[i]
|
227 |
+
idx_bucket = self._bisect(length)
|
228 |
+
if idx_bucket != -1:
|
229 |
+
buckets[idx_bucket].append(i)
|
230 |
+
|
231 |
+
for i in range(len(buckets) - 1, 0, -1):
|
232 |
+
if len(buckets[i]) == 0:
|
233 |
+
buckets.pop(i)
|
234 |
+
self.boundaries.pop(i + 1)
|
235 |
+
|
236 |
+
num_samples_per_bucket = []
|
237 |
+
for i in range(len(buckets)):
|
238 |
+
len_bucket = len(buckets[i])
|
239 |
+
total_batch_size = self.num_replicas * self.batch_size
|
240 |
+
rem = (total_batch_size -
|
241 |
+
(len_bucket % total_batch_size)) % total_batch_size
|
242 |
+
num_samples_per_bucket.append(len_bucket + rem)
|
243 |
+
return buckets, num_samples_per_bucket
|
244 |
+
|
245 |
+
def __iter__(self):
|
246 |
+
# deterministically shuffle based on epoch
|
247 |
+
g = torch.Generator()
|
248 |
+
g.manual_seed(self.epoch)
|
249 |
+
|
250 |
+
indices = []
|
251 |
+
if self.shuffle:
|
252 |
+
for bucket in self.buckets:
|
253 |
+
indices.append(
|
254 |
+
torch.randperm(len(bucket), generator=g).tolist())
|
255 |
+
else:
|
256 |
+
for bucket in self.buckets:
|
257 |
+
indices.append(list(range(len(bucket))))
|
258 |
+
|
259 |
+
batches = []
|
260 |
+
for i in range(len(self.buckets)):
|
261 |
+
bucket = self.buckets[i]
|
262 |
+
len_bucket = len(bucket)
|
263 |
+
ids_bucket = indices[i]
|
264 |
+
num_samples_bucket = self.num_samples_per_bucket[i]
|
265 |
+
|
266 |
+
# add extra samples to make it evenly divisible
|
267 |
+
rem = num_samples_bucket - len_bucket
|
268 |
+
ids_bucket = ids_bucket + ids_bucket * (
|
269 |
+
rem // len_bucket) + ids_bucket[:(rem % len_bucket)]
|
270 |
+
|
271 |
+
# subsample
|
272 |
+
ids_bucket = ids_bucket[self.rank::self.num_replicas]
|
273 |
+
|
274 |
+
# batching
|
275 |
+
for j in range(len(ids_bucket) // self.batch_size):
|
276 |
+
batch = [
|
277 |
+
bucket[idx]
|
278 |
+
for idx in ids_bucket[j * self.batch_size:(j + 1) *
|
279 |
+
self.batch_size]
|
280 |
+
]
|
281 |
+
batches.append(batch)
|
282 |
+
|
283 |
+
if self.shuffle:
|
284 |
+
batch_ids = torch.randperm(len(batches), generator=g).tolist()
|
285 |
+
batches = [batches[i] for i in batch_ids]
|
286 |
+
self.batches = batches
|
287 |
+
|
288 |
+
assert len(self.batches) * self.batch_size == self.num_samples
|
289 |
+
return iter(self.batches)
|
290 |
+
|
291 |
+
def _bisect(self, x, lo=0, hi=None):
|
292 |
+
if hi is None:
|
293 |
+
hi = len(self.boundaries) - 1
|
294 |
+
|
295 |
+
if hi > lo:
|
296 |
+
mid = (hi + lo) // 2
|
297 |
+
if self.boundaries[mid] < x and x <= self.boundaries[mid + 1]:
|
298 |
+
return mid
|
299 |
+
elif x <= self.boundaries[mid]:
|
300 |
+
return self._bisect(x, lo, mid)
|
301 |
+
else:
|
302 |
+
return self._bisect(x, mid + 1, hi)
|
303 |
+
else:
|
304 |
+
return -1
|
305 |
+
|
306 |
+
def __len__(self):
|
307 |
+
return self.num_samples // self.batch_size
|
export_onnx.py
ADDED
@@ -0,0 +1,140 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2022, Yongqiang Li (yongqiangli@alumni.hust.edu.cn)
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import argparse
|
16 |
+
import json
|
17 |
+
import os
|
18 |
+
import sys
|
19 |
+
|
20 |
+
import torch
|
21 |
+
|
22 |
+
from models import SynthesizerTrn
|
23 |
+
import utils
|
24 |
+
|
25 |
+
try:
|
26 |
+
import onnxruntime as ort
|
27 |
+
except ImportError:
|
28 |
+
print('Please install onnxruntime!')
|
29 |
+
sys.exit(1)
|
30 |
+
|
31 |
+
|
32 |
+
def to_numpy(tensor):
|
33 |
+
return tensor.detach().cpu().numpy() if tensor.requires_grad \
|
34 |
+
else tensor.detach().numpy()
|
35 |
+
|
36 |
+
|
37 |
+
def get_args():
|
38 |
+
parser = argparse.ArgumentParser(description='export onnx model')
|
39 |
+
parser.add_argument('--checkpoint', required=True, help='checkpoint')
|
40 |
+
parser.add_argument('--cfg', required=True, help='config file')
|
41 |
+
parser.add_argument('--onnx_model', required=True, help='onnx model name')
|
42 |
+
# parser.add_argument('--phone_table',
|
43 |
+
# required=True,
|
44 |
+
# help='input phone dict')
|
45 |
+
# parser.add_argument('--speaker_table', default=None, help='speaker table')
|
46 |
+
# parser.add_argument("--speaker_num", required=True,
|
47 |
+
# type=int, help="speaker num")
|
48 |
+
parser.add_argument(
|
49 |
+
'--providers',
|
50 |
+
required=False,
|
51 |
+
default='CPUExecutionProvider',
|
52 |
+
choices=['CUDAExecutionProvider', 'CPUExecutionProvider'],
|
53 |
+
help='the model to send request to')
|
54 |
+
args = parser.parse_args()
|
55 |
+
return args
|
56 |
+
|
57 |
+
|
58 |
+
def get_data_from_cfg(cfg_path: str):
|
59 |
+
assert os.path.isfile(cfg_path)
|
60 |
+
with open(cfg_path, 'r') as f:
|
61 |
+
data = json.load(f)
|
62 |
+
symbols = data["symbols"]
|
63 |
+
speaker_num = data["data"]["n_speakers"]
|
64 |
+
return len(symbols), speaker_num
|
65 |
+
|
66 |
+
|
67 |
+
def main():
|
68 |
+
args = get_args()
|
69 |
+
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
|
70 |
+
|
71 |
+
hps = utils.get_hparams_from_file(args.cfg)
|
72 |
+
# with open(args.phone_table) as p_f:
|
73 |
+
# phone_num = len(p_f.readlines()) + 1
|
74 |
+
# num_speakers = 1
|
75 |
+
# if args.speaker_table is not None:
|
76 |
+
# num_speakers = len(open(args.speaker_table).readlines()) + 1
|
77 |
+
phone_num, num_speakers = get_data_from_cfg(args.cfg)
|
78 |
+
net_g = SynthesizerTrn(phone_num,
|
79 |
+
hps.data.filter_length // 2 + 1,
|
80 |
+
hps.train.segment_size // hps.data.hop_length,
|
81 |
+
n_speakers=num_speakers,
|
82 |
+
**hps.model)
|
83 |
+
utils.load_checkpoint(args.checkpoint, net_g, None)
|
84 |
+
net_g.forward = net_g.export_forward
|
85 |
+
net_g.eval()
|
86 |
+
|
87 |
+
seq = torch.randint(low=0, high=phone_num, size=(1, 10), dtype=torch.long)
|
88 |
+
seq_len = torch.IntTensor([seq.size(1)]).long()
|
89 |
+
|
90 |
+
# noise(可用于控制感情等变化程度) lenth(可用于控制整体语速) noisew(控制音素发音长度变化程度)
|
91 |
+
# 参考 https://github.com/gbxh/genshinTTS
|
92 |
+
scales = torch.FloatTensor([0.667, 1.0, 0.8])
|
93 |
+
# make triton dynamic shape happy
|
94 |
+
scales = scales.unsqueeze(0)
|
95 |
+
sid = torch.IntTensor([0]).long()
|
96 |
+
|
97 |
+
dummy_input = (seq, seq_len, scales, sid)
|
98 |
+
torch.onnx.export(model=net_g,
|
99 |
+
args=dummy_input,
|
100 |
+
f=args.onnx_model,
|
101 |
+
input_names=['input', 'input_lengths', 'scales', 'sid'],
|
102 |
+
output_names=['output'],
|
103 |
+
dynamic_axes={
|
104 |
+
'input': {
|
105 |
+
0: 'batch',
|
106 |
+
1: 'phonemes'
|
107 |
+
},
|
108 |
+
'input_lengths': {
|
109 |
+
0: 'batch'
|
110 |
+
},
|
111 |
+
'scales': {
|
112 |
+
0: 'batch'
|
113 |
+
},
|
114 |
+
'sid': {
|
115 |
+
0: 'batch'
|
116 |
+
},
|
117 |
+
'output': {
|
118 |
+
0: 'batch',
|
119 |
+
1: 'audio',
|
120 |
+
2: 'audio_length'
|
121 |
+
}
|
122 |
+
},
|
123 |
+
opset_version=13,
|
124 |
+
verbose=False)
|
125 |
+
|
126 |
+
# Verify onnx precision
|
127 |
+
torch_output = net_g(seq, seq_len, scales, sid)
|
128 |
+
providers = [args.providers]
|
129 |
+
ort_sess = ort.InferenceSession(args.onnx_model, providers=providers)
|
130 |
+
ort_inputs = {
|
131 |
+
'input': to_numpy(seq),
|
132 |
+
'input_lengths': to_numpy(seq_len),
|
133 |
+
'scales': to_numpy(scales),
|
134 |
+
'sid': to_numpy(sid),
|
135 |
+
}
|
136 |
+
onnx_output = ort_sess.run(None, ort_inputs)
|
137 |
+
|
138 |
+
|
139 |
+
if __name__ == '__main__':
|
140 |
+
main()
|
inference.py
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2022, Yongqiang Li (yongqiangli@alumni.hust.edu.cn)
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import argparse
|
16 |
+
|
17 |
+
import numpy as np
|
18 |
+
from scipy.io import wavfile
|
19 |
+
import torch
|
20 |
+
|
21 |
+
import commons
|
22 |
+
from models import SynthesizerTrn
|
23 |
+
import utils
|
24 |
+
|
25 |
+
|
26 |
+
def get_args():
|
27 |
+
parser = argparse.ArgumentParser(description='inference')
|
28 |
+
parser.add_argument('--checkpoint', required=True, help='checkpoint')
|
29 |
+
parser.add_argument('--cfg', required=True, help='config file')
|
30 |
+
parser.add_argument('--outdir', required=True, help='ouput directory')
|
31 |
+
parser.add_argument('--phone_table',
|
32 |
+
required=True,
|
33 |
+
help='input phone dict')
|
34 |
+
parser.add_argument('--speaker_table', default=None, help='speaker table')
|
35 |
+
parser.add_argument('--test_file', required=True, help='test file')
|
36 |
+
args = parser.parse_args()
|
37 |
+
return args
|
38 |
+
|
39 |
+
|
40 |
+
def main():
|
41 |
+
args = get_args()
|
42 |
+
print(args)
|
43 |
+
phone_dict = {}
|
44 |
+
with open(args.phone_table) as p_f:
|
45 |
+
for line in p_f:
|
46 |
+
phone_id = line.strip().split()
|
47 |
+
phone_dict[phone_id[0]] = int(phone_id[1])
|
48 |
+
speaker_dict = {}
|
49 |
+
if args.speaker_table is not None:
|
50 |
+
with open(args.speaker_table) as p_f:
|
51 |
+
for line in p_f:
|
52 |
+
arr = line.strip().split()
|
53 |
+
assert len(arr) == 2
|
54 |
+
speaker_dict[arr[0]] = int(arr[1])
|
55 |
+
hps = utils.get_hparams_from_file(args.cfg)
|
56 |
+
|
57 |
+
net_g = SynthesizerTrn(
|
58 |
+
len(phone_dict) + 1,
|
59 |
+
hps.data.filter_length // 2 + 1,
|
60 |
+
hps.train.segment_size // hps.data.hop_length,
|
61 |
+
n_speakers=len(speaker_dict) + 1, # 0 is kept for unknown speaker
|
62 |
+
**hps.model).cuda()
|
63 |
+
net_g.eval()
|
64 |
+
utils.load_checkpoint(args.checkpoint, net_g, None)
|
65 |
+
|
66 |
+
with open(args.test_file) as fin:
|
67 |
+
for line in fin:
|
68 |
+
arr = line.strip().split("|")
|
69 |
+
audio_path = arr[0]
|
70 |
+
if len(arr) == 2:
|
71 |
+
sid = 0
|
72 |
+
text = arr[1]
|
73 |
+
else:
|
74 |
+
sid = speaker_dict[arr[1]]
|
75 |
+
text = arr[2]
|
76 |
+
seq = [phone_dict[symbol] for symbol in text.split()]
|
77 |
+
if hps.data.add_blank:
|
78 |
+
seq = commons.intersperse(seq, 0)
|
79 |
+
seq = torch.LongTensor(seq)
|
80 |
+
with torch.no_grad():
|
81 |
+
x = seq.cuda().unsqueeze(0)
|
82 |
+
x_length = torch.LongTensor([seq.size(0)]).cuda()
|
83 |
+
sid = torch.LongTensor([sid]).cuda()
|
84 |
+
audio = net_g.infer(
|
85 |
+
x,
|
86 |
+
x_length,
|
87 |
+
sid=sid,
|
88 |
+
noise_scale=.667,
|
89 |
+
noise_scale_w=0.8,
|
90 |
+
length_scale=1)[0][0, 0].data.cpu().float().numpy()
|
91 |
+
audio *= 32767 / max(0.01, np.max(np.abs(audio))) * 0.6
|
92 |
+
audio = np.clip(audio, -32767.0, 32767.0)
|
93 |
+
wavfile.write(args.outdir + "/" + audio_path.split("/")[-1],
|
94 |
+
hps.data.sampling_rate, audio.astype(np.int16))
|
95 |
+
|
96 |
+
|
97 |
+
if __name__ == '__main__':
|
98 |
+
main()
|
inference_onnx.py
ADDED
@@ -0,0 +1,148 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2022, Yongqiang Li (yongqiangli@alumni.hust.edu.cn)
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import argparse
|
16 |
+
from text import text_to_sequence
|
17 |
+
import numpy as np
|
18 |
+
from scipy.io import wavfile
|
19 |
+
import torch
|
20 |
+
import json
|
21 |
+
import commons
|
22 |
+
import utils
|
23 |
+
import sys
|
24 |
+
import pathlib
|
25 |
+
|
26 |
+
try:
|
27 |
+
import onnxruntime as ort
|
28 |
+
except ImportError:
|
29 |
+
print('Please install onnxruntime!')
|
30 |
+
sys.exit(1)
|
31 |
+
|
32 |
+
|
33 |
+
def to_numpy(tensor: torch.Tensor):
|
34 |
+
return tensor.detach().cpu().numpy() if tensor.requires_grad \
|
35 |
+
else tensor.detach().numpy()
|
36 |
+
|
37 |
+
|
38 |
+
def get_args():
|
39 |
+
parser = argparse.ArgumentParser(description='inference')
|
40 |
+
parser.add_argument('--onnx_model', required=True, help='onnx model')
|
41 |
+
parser.add_argument('--cfg', required=True, help='config file')
|
42 |
+
parser.add_argument('--outdir', default="onnx_output",
|
43 |
+
help='ouput directory')
|
44 |
+
# parser.add_argument('--phone_table',
|
45 |
+
# required=True,
|
46 |
+
# help='input phone dict')
|
47 |
+
# parser.add_argument('--speaker_table', default=None, help='speaker table')
|
48 |
+
parser.add_argument('--test_file', required=True, help='test file')
|
49 |
+
args = parser.parse_args()
|
50 |
+
return args
|
51 |
+
|
52 |
+
|
53 |
+
def get_symbols_from_json(path):
|
54 |
+
import os
|
55 |
+
assert os.path.isfile(path)
|
56 |
+
with open(path, 'r') as f:
|
57 |
+
data = json.load(f)
|
58 |
+
return data['symbols']
|
59 |
+
|
60 |
+
|
61 |
+
def main():
|
62 |
+
args = get_args()
|
63 |
+
print(args)
|
64 |
+
if not pathlib.Path(args.outdir).exists():
|
65 |
+
pathlib.Path(args.outdir).mkdir(exist_ok=True, parents=True)
|
66 |
+
# phones =
|
67 |
+
symbols = get_symbols_from_json(args.cfg)
|
68 |
+
phone_dict = {
|
69 |
+
symbol: i for i, symbol in enumerate(symbols)
|
70 |
+
}
|
71 |
+
|
72 |
+
# speaker_dict = {}
|
73 |
+
# if args.speaker_table is not None:
|
74 |
+
# with open(args.speaker_table) as p_f:
|
75 |
+
# for line in p_f:
|
76 |
+
# arr = line.strip().split()
|
77 |
+
# assert len(arr) == 2
|
78 |
+
# speaker_dict[arr[0]] = int(arr[1])
|
79 |
+
hps = utils.get_hparams_from_file(args.cfg)
|
80 |
+
|
81 |
+
ort_sess = ort.InferenceSession(args.onnx_model)
|
82 |
+
|
83 |
+
with open(args.test_file) as fin:
|
84 |
+
for line in fin:
|
85 |
+
arr = line.strip().split("|")
|
86 |
+
audio_path = arr[0]
|
87 |
+
|
88 |
+
# TODO: 控制说话人编号
|
89 |
+
sid = 3
|
90 |
+
text = '[ZH]你好,重庆市位于四川省东边[ZH]'
|
91 |
+
# else:
|
92 |
+
# sid = speaker_dict[arr[1]]
|
93 |
+
# text = arr[2]
|
94 |
+
seq = text_to_sequence(text, cleaner_names=hps.data.text_cleaners
|
95 |
+
)
|
96 |
+
if hps.data.add_blank:
|
97 |
+
seq = commons.intersperse(seq, 0)
|
98 |
+
|
99 |
+
# if hps.data.add_blank:
|
100 |
+
# seq = commons.intersperse(seq, 0)
|
101 |
+
with torch.no_grad():
|
102 |
+
# x = torch.LongTensor([seq])
|
103 |
+
# x_len = torch.IntTensor([x.size(1)]).long()
|
104 |
+
# sid = torch.LongTensor([sid]).long()
|
105 |
+
# scales = torch.FloatTensor([0.667, 1.0, 1])
|
106 |
+
# # make triton dynamic shape happy
|
107 |
+
# scales = scales.unsqueeze(0)
|
108 |
+
|
109 |
+
# use numpy to replace torch
|
110 |
+
x = np.array([seq], dtype=np.int64)
|
111 |
+
x_len = np.array([x.shape[1]], dtype=np.int64)
|
112 |
+
sid = np.array([sid], dtype=np.int64)
|
113 |
+
# noise(可用于控制感情等变化程度) lenth(可用于控制整体语速) noisew(控制音素发音长度变化程度)
|
114 |
+
# 参考 https://github.com/gbxh/genshinTTS
|
115 |
+
scales = np.array([0.667, 0.8, 1], dtype=np.float32)
|
116 |
+
# scales = scales[np.newaxis, :]
|
117 |
+
# scales.reshape(1, -1)
|
118 |
+
scales.resize(1, 3)
|
119 |
+
|
120 |
+
ort_inputs = {
|
121 |
+
'input': x,
|
122 |
+
'input_lengths': x_len,
|
123 |
+
'scales': scales,
|
124 |
+
'sid': sid
|
125 |
+
}
|
126 |
+
|
127 |
+
# ort_inputs = {
|
128 |
+
# 'input': to_numpy(x),
|
129 |
+
# 'input_lengths': to_numpy(x_len),
|
130 |
+
# 'scales': to_numpy(scales),
|
131 |
+
# 'sid': to_numpy(sid)
|
132 |
+
# }
|
133 |
+
import time
|
134 |
+
# start_time = time.time()
|
135 |
+
start_time = time.perf_counter()
|
136 |
+
audio = np.squeeze(ort_sess.run(None, ort_inputs))
|
137 |
+
audio *= 32767.0 / max(0.01, np.max(np.abs(audio))) * 0.6
|
138 |
+
audio = np.clip(audio, -32767.0, 32767.0)
|
139 |
+
end_time = time.perf_counter()
|
140 |
+
# end_time = time.time()
|
141 |
+
print("infer time cost: ", end_time - start_time, "s")
|
142 |
+
|
143 |
+
wavfile.write(args.outdir + "/" + audio_path.split("/")[-1],
|
144 |
+
hps.data.sampling_rate, audio.astype(np.int16))
|
145 |
+
|
146 |
+
|
147 |
+
if __name__ == '__main__':
|
148 |
+
main()
|
local_run.py
ADDED
@@ -0,0 +1,137 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
from text import text_to_sequence
|
3 |
+
import numpy as np
|
4 |
+
from scipy.io import wavfile
|
5 |
+
import torch
|
6 |
+
import json
|
7 |
+
import commons
|
8 |
+
import utils
|
9 |
+
import sys
|
10 |
+
import pathlib
|
11 |
+
from flask import Flask, request
|
12 |
+
import threading
|
13 |
+
import onnxruntime as ort
|
14 |
+
import time
|
15 |
+
from pydub import AudioSegment
|
16 |
+
import io
|
17 |
+
import os
|
18 |
+
from transformers import AutoTokenizer, AutoModel
|
19 |
+
import tkinter as tk
|
20 |
+
from tkinter import scrolledtext
|
21 |
+
from scipy.io.wavfile import write
|
22 |
+
def get_args():
|
23 |
+
parser = argparse.ArgumentParser(description='inference')
|
24 |
+
parser.add_argument('--onnx_model', default = './moe/model.onnx')
|
25 |
+
parser.add_argument('--cfg', default="./moe/config_v.json")
|
26 |
+
parser.add_argument('--outdir', default="./moe",
|
27 |
+
help='ouput folder')
|
28 |
+
parser.add_argument('--audio',
|
29 |
+
type=str,
|
30 |
+
help='你要替换的音频文件的,假设这些音频文件为temp1、temp2、temp3......',
|
31 |
+
default = 'D:/app_develop/live2d_whole/2010002/sounds/temp.wav')
|
32 |
+
parser.add_argument('--ChatGLM',default = "./moe",
|
33 |
+
help='https://github.com/THUDM/ChatGLM-6B')
|
34 |
+
args = parser.parse_args()
|
35 |
+
return args
|
36 |
+
|
37 |
+
def to_numpy(tensor: torch.Tensor):
|
38 |
+
return tensor.detach().cpu().numpy() if tensor.requires_grad \
|
39 |
+
else tensor.detach().numpy()
|
40 |
+
|
41 |
+
def get_symbols_from_json(path):
|
42 |
+
import os
|
43 |
+
assert os.path.isfile(path)
|
44 |
+
with open(path, 'r') as f:
|
45 |
+
data = json.load(f)
|
46 |
+
return data['symbols']
|
47 |
+
|
48 |
+
args = get_args()
|
49 |
+
symbols = get_symbols_from_json(args.cfg)
|
50 |
+
phone_dict = {
|
51 |
+
symbol: i for i, symbol in enumerate(symbols)
|
52 |
+
}
|
53 |
+
hps = utils.get_hparams_from_file(args.cfg)
|
54 |
+
ort_sess = ort.InferenceSession(args.onnx_model)
|
55 |
+
|
56 |
+
def is_japanese(string):
|
57 |
+
for ch in string:
|
58 |
+
if ord(ch) > 0x3040 and ord(ch) < 0x30FF:
|
59 |
+
return True
|
60 |
+
return False
|
61 |
+
|
62 |
+
def infer(text):
|
63 |
+
#选择你想要的角色
|
64 |
+
sid = 7
|
65 |
+
text = f"[JA]{text}[JA]" if is_japanese(text) else f"[ZH]{text}[ZH]"
|
66 |
+
#seq = text_to_sequence(text, symbols=hps.symbols, cleaner_names=hps.data.text_cleaners)
|
67 |
+
seq = text_to_sequence(text, cleaner_names=hps.data.text_cleaners)
|
68 |
+
if hps.data.add_blank:
|
69 |
+
seq = commons.intersperse(seq, 0)
|
70 |
+
with torch.no_grad():
|
71 |
+
x = np.array([seq], dtype=np.int64)
|
72 |
+
x_len = np.array([x.shape[1]], dtype=np.int64)
|
73 |
+
sid = np.array([sid], dtype=np.int64)
|
74 |
+
scales = np.array([0.667, 0.7, 1], dtype=np.float32)
|
75 |
+
scales.resize(1, 3)
|
76 |
+
ort_inputs = {
|
77 |
+
'input': x,
|
78 |
+
'input_lengths': x_len,
|
79 |
+
'scales': scales,
|
80 |
+
'sid': sid
|
81 |
+
}
|
82 |
+
t1 = time.time()
|
83 |
+
audio = np.squeeze(ort_sess.run(None, ort_inputs))
|
84 |
+
audio *= 32767.0 / max(0.01, np.max(np.abs(audio))) * 0.6
|
85 |
+
audio = np.clip(audio, -32767.0, 32767.0)
|
86 |
+
bytes_wav = bytes()
|
87 |
+
byte_io = io.BytesIO(bytes_wav)
|
88 |
+
wavfile.write(args.audio + '.wav',hps.data.sampling_rate, audio.astype(np.int16))
|
89 |
+
i = 0
|
90 |
+
while i < 19:
|
91 |
+
i +=1
|
92 |
+
cmd = 'ffmpeg -y -i ' + args.audio + '.wav' + ' -ar 44100 '+ args.audio.replace('temp','temp'+str(i))
|
93 |
+
os.system(cmd)
|
94 |
+
t2 = time.time()
|
95 |
+
print("推理耗时:",(t2 - t1),"s")
|
96 |
+
return text
|
97 |
+
tokenizer = AutoTokenizer.from_pretrained(args.ChatGLM, trust_remote_code=True)
|
98 |
+
#8G GPU
|
99 |
+
model = AutoModel.from_pretrained(args.ChatGLM, trust_remote_code=True).half().quantize(4).cuda()
|
100 |
+
history = []
|
101 |
+
def send_message():
|
102 |
+
global history
|
103 |
+
message = input_box.get("1.0", "end-1c") # 获取用户输入的文本
|
104 |
+
t1 = time.time()
|
105 |
+
if message == 'clear':
|
106 |
+
history = []
|
107 |
+
else:
|
108 |
+
response, new_history = model.chat(tokenizer, message, history)
|
109 |
+
response = response.replace(" ",'').replace("\n",'.')
|
110 |
+
text = infer(response)
|
111 |
+
text = text.replace('[JA]','').replace('[ZH]','')
|
112 |
+
chat_box.configure(state='normal') # 配置聊天框为可写状态
|
113 |
+
chat_box.insert(tk.END, "You: " + message + "\n") # 在聊天框中显示用户输入的文本
|
114 |
+
chat_box.insert(tk.END, "Tamao: " + text + "\n") # 在聊天框中显示 chatbot 的回复
|
115 |
+
chat_box.configure(state='disabled') # 配置聊天框为只读状态
|
116 |
+
input_box.delete("1.0", tk.END) # 清空输入框
|
117 |
+
t2 = time.time()
|
118 |
+
print("总共耗时:",(t2 - t1),"s")
|
119 |
+
|
120 |
+
root = tk.Tk()
|
121 |
+
root.title("Tamao")
|
122 |
+
|
123 |
+
# 创建聊天框
|
124 |
+
chat_box = scrolledtext.ScrolledText(root, width=50, height=10)
|
125 |
+
chat_box.configure(state='disabled') # 聊天框一开始是只读状态
|
126 |
+
chat_box.pack(side=tk.TOP, fill=tk.BOTH, padx=10, pady=10, expand=True)
|
127 |
+
|
128 |
+
# 创建输入框和发送按钮
|
129 |
+
input_frame = tk.Frame(root)
|
130 |
+
input_frame.pack(side=tk.BOTTOM, fill=tk.X, padx=10, pady=10)
|
131 |
+
input_box = tk.Text(input_frame, height=3, width=50) # 设置输入框宽度为50
|
132 |
+
input_box.pack(side=tk.LEFT, fill=tk.X, padx=10, expand=True)
|
133 |
+
send_button = tk.Button(input_frame, text="Send", command=send_message)
|
134 |
+
send_button.pack(side=tk.RIGHT, padx=10)
|
135 |
+
|
136 |
+
# 运行主程序
|
137 |
+
root.mainloop()
|
losses.py
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
|
4 |
+
def feature_loss(fmap_r, fmap_g):
|
5 |
+
loss = 0
|
6 |
+
for dr, dg in zip(fmap_r, fmap_g):
|
7 |
+
for rl, gl in zip(dr, dg):
|
8 |
+
rl = rl.float().detach()
|
9 |
+
gl = gl.float()
|
10 |
+
loss += torch.mean(torch.abs(rl - gl))
|
11 |
+
|
12 |
+
return loss * 2
|
13 |
+
|
14 |
+
|
15 |
+
def discriminator_loss(disc_real_outputs, disc_generated_outputs):
|
16 |
+
loss = 0
|
17 |
+
r_losses = []
|
18 |
+
g_losses = []
|
19 |
+
for dr, dg in zip(disc_real_outputs, disc_generated_outputs):
|
20 |
+
dr = dr.float()
|
21 |
+
dg = dg.float()
|
22 |
+
r_loss = torch.mean((1 - dr)**2)
|
23 |
+
g_loss = torch.mean(dg**2)
|
24 |
+
loss += (r_loss + g_loss)
|
25 |
+
r_losses.append(r_loss.item())
|
26 |
+
g_losses.append(g_loss.item())
|
27 |
+
|
28 |
+
return loss, r_losses, g_losses
|
29 |
+
|
30 |
+
|
31 |
+
def generator_loss(disc_outputs):
|
32 |
+
loss = 0
|
33 |
+
gen_losses = []
|
34 |
+
for dg in disc_outputs:
|
35 |
+
dg = dg.float()
|
36 |
+
l = torch.mean((1 - dg)**2)
|
37 |
+
gen_losses.append(l)
|
38 |
+
loss += l
|
39 |
+
|
40 |
+
return loss, gen_losses
|
41 |
+
|
42 |
+
|
43 |
+
def kl_loss(z_p, logs_q, m_p, logs_p, z_mask):
|
44 |
+
"""
|
45 |
+
z_p, logs_q: [b, h, t_t]
|
46 |
+
m_p, logs_p: [b, h, t_t]
|
47 |
+
"""
|
48 |
+
z_p = z_p.float()
|
49 |
+
logs_q = logs_q.float()
|
50 |
+
m_p = m_p.float()
|
51 |
+
logs_p = logs_p.float()
|
52 |
+
z_mask = z_mask.float()
|
53 |
+
|
54 |
+
kl = logs_p - logs_q - 0.5
|
55 |
+
kl += 0.5 * ((z_p - m_p)**2) * torch.exp(-2. * logs_p)
|
56 |
+
kl = torch.sum(kl * z_mask)
|
57 |
+
l = kl / torch.sum(z_mask)
|
58 |
+
return l
|
main.py
ADDED
@@ -0,0 +1,251 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
logging.getLogger('numba').setLevel(logging.WARNING)
|
3 |
+
logging.getLogger('matplotlib').setLevel(logging.WARNING)
|
4 |
+
logging.getLogger('urllib3').setLevel(logging.WARNING)
|
5 |
+
from text import text_to_sequence
|
6 |
+
import numpy as np
|
7 |
+
from scipy.io import wavfile
|
8 |
+
import torch
|
9 |
+
import json
|
10 |
+
import commons
|
11 |
+
import utils
|
12 |
+
import sys
|
13 |
+
import pathlib
|
14 |
+
import onnxruntime as ort
|
15 |
+
import gradio as gr
|
16 |
+
import argparse
|
17 |
+
import time
|
18 |
+
import os
|
19 |
+
import io
|
20 |
+
from scipy.io.wavfile import write
|
21 |
+
from flask import Flask, request
|
22 |
+
from threading import Thread
|
23 |
+
import openai
|
24 |
+
import requests
|
25 |
+
class VitsGradio:
|
26 |
+
def __init__(self):
|
27 |
+
self.lan = ["中文","日文","自动"]
|
28 |
+
self.chatapi = ["gpt-3.5-turbo","gpt3"]
|
29 |
+
self.modelPaths = []
|
30 |
+
for root,dirs,files in os.walk("checkpoints"):
|
31 |
+
for dir in dirs:
|
32 |
+
self.modelPaths.append(dir)
|
33 |
+
with gr.Blocks() as self.Vits:
|
34 |
+
with gr.Tab("调试用"):
|
35 |
+
with gr.Row():
|
36 |
+
with gr.Column():
|
37 |
+
with gr.Row():
|
38 |
+
with gr.Column():
|
39 |
+
self.text = gr.TextArea(label="Text", value="你好")
|
40 |
+
with gr.Accordion(label="测试api", open=False):
|
41 |
+
self.local_chat1 = gr.Checkbox(value=False, label="使用网址+文本进行模拟")
|
42 |
+
self.url_input = gr.TextArea(label="键入测试", value="http://127.0.0.1:8080/chat?Text=")
|
43 |
+
butto = gr.Button("模拟前端抓取语音文件")
|
44 |
+
btnVC = gr.Button("测试tts+对话程序")
|
45 |
+
with gr.Column():
|
46 |
+
output2 = gr.TextArea(label="回复")
|
47 |
+
output1 = gr.Audio(label="采样率22050")
|
48 |
+
output3 = gr.outputs.File(label="44100hz: output.wav")
|
49 |
+
butto.click(self.Simul, inputs=[self.text, self.url_input], outputs=[output2,output3])
|
50 |
+
btnVC.click(self.tts_fn, inputs=[self.text], outputs=[output1,output2])
|
51 |
+
with gr.Tab("控制面板"):
|
52 |
+
with gr.Row():
|
53 |
+
with gr.Column():
|
54 |
+
with gr.Row():
|
55 |
+
with gr.Column():
|
56 |
+
self.api_input1 = gr.TextArea(label="输入api-key或本地存储说话模型的路径", value="https://platform.openai.com/account/api-keys")
|
57 |
+
with gr.Accordion(label="chatbot选择", open=False):
|
58 |
+
self.api_input2 = gr.Checkbox(value=True, label="采用gpt3.5")
|
59 |
+
self.local_chat1 = gr.Checkbox(value=False, label="启动本地chatbot")
|
60 |
+
self.local_chat2 = gr.Checkbox(value=True, label="是否量化")
|
61 |
+
res = gr.TextArea()
|
62 |
+
Botselection = gr.Button("完成chatbot设定")
|
63 |
+
Botselection.click(self.check_bot, inputs=[self.api_input1,self.api_input2,self.local_chat1,self.local_chat2], outputs = [res])
|
64 |
+
self.input1 = gr.Dropdown(label = "模型", choices = self.modelPaths, value = self.modelPaths[0], type = "value")
|
65 |
+
self.input2 = gr.Dropdown(label="Language", choices=self.lan, value="自动", interactive=True)
|
66 |
+
with gr.Column():
|
67 |
+
btnVC = gr.Button("完成vits TTS端设定")
|
68 |
+
self.input3 = gr.Dropdown(label="Speaker", choices=list(range(101)), value=0, interactive=True)
|
69 |
+
self.input4 = gr.Slider(minimum=0, maximum=1.0, label="更改噪声比例(noise scale),以控制情感", value=0.267)
|
70 |
+
self.input5 = gr.Slider(minimum=0, maximum=1.0, label="更改噪声偏差(noise scale w),以控制音素长短", value=0.7)
|
71 |
+
self.input6 = gr.Slider(minimum=0.1, maximum=10, label="duration", value=1)
|
72 |
+
statusa = gr.TextArea()
|
73 |
+
btnVC.click(self.create_tts_fn, inputs=[self.input1, self.input2, self.input3, self.input4, self.input5, self.input6], outputs = [statusa])
|
74 |
+
|
75 |
+
def Simul(self,text,url_input):
|
76 |
+
web = url_input + text
|
77 |
+
res = requests.get(web)
|
78 |
+
music = res.content
|
79 |
+
with open('output.wav', 'wb') as code:
|
80 |
+
code.write(music)
|
81 |
+
file_path = "output.wav"
|
82 |
+
return web,file_path
|
83 |
+
|
84 |
+
|
85 |
+
def chatgpt(self,text):
|
86 |
+
self.messages.append({"role": "user", "content": text},)
|
87 |
+
chat = openai.ChatCompletion.create(model="gpt-3.5-turbo", messages= self.messages)
|
88 |
+
reply = chat.choices[0].message.content
|
89 |
+
return reply
|
90 |
+
|
91 |
+
def ChATGLM(self,text):
|
92 |
+
if text == 'clear':
|
93 |
+
self.history = []
|
94 |
+
response, new_history = self.model.chat(self.tokenizer, text, self.history)
|
95 |
+
response = response.replace(" ",'').replace("\n",'.')
|
96 |
+
self.history = new_history
|
97 |
+
return response
|
98 |
+
|
99 |
+
def gpt3_chat(self,text):
|
100 |
+
call_name = "Waifu"
|
101 |
+
openai.api_key = args.key
|
102 |
+
identity = ""
|
103 |
+
start_sequence = '\n'+str(call_name)+':'
|
104 |
+
restart_sequence = "\nYou: "
|
105 |
+
if 1 == 1:
|
106 |
+
prompt0 = text #当期prompt
|
107 |
+
if text == 'quit':
|
108 |
+
return prompt0
|
109 |
+
prompt = identity + prompt0 + start_sequence
|
110 |
+
response = openai.Completion.create(
|
111 |
+
model="text-davinci-003",
|
112 |
+
prompt=prompt,
|
113 |
+
temperature=0.5,
|
114 |
+
max_tokens=1000,
|
115 |
+
top_p=1.0,
|
116 |
+
frequency_penalty=0.5,
|
117 |
+
presence_penalty=0.0,
|
118 |
+
stop=["\nYou:"]
|
119 |
+
)
|
120 |
+
return response['choices'][0]['text'].strip()
|
121 |
+
|
122 |
+
def check_bot(self,api_input1,api_input2,local_chat1,local_chat2):
|
123 |
+
if local_chat1:
|
124 |
+
from transformers import AutoTokenizer, AutoModel
|
125 |
+
self.tokenizer = AutoTokenizer.from_pretrained(api_input1, trust_remote_code=True)
|
126 |
+
if local_chat2:
|
127 |
+
self.model = AutoModel.from_pretrained(api_input1, trust_remote_code=True).half().cuda()
|
128 |
+
else:
|
129 |
+
self.model = AutoModel.from_pretrained(api_input1, trust_remote_code=True)
|
130 |
+
self.history = []
|
131 |
+
else:
|
132 |
+
self.messages = []
|
133 |
+
openai.api_key = api_input1
|
134 |
+
return "Finished"
|
135 |
+
|
136 |
+
def is_japanese(self,string):
|
137 |
+
for ch in string:
|
138 |
+
if ord(ch) > 0x3040 and ord(ch) < 0x30FF:
|
139 |
+
return True
|
140 |
+
return False
|
141 |
+
|
142 |
+
def is_english(self,string):
|
143 |
+
import re
|
144 |
+
pattern = re.compile('^[A-Za-z0-9.,:;!?()_*"\' ]+$')
|
145 |
+
if pattern.fullmatch(string):
|
146 |
+
return True
|
147 |
+
else:
|
148 |
+
return False
|
149 |
+
|
150 |
+
def get_symbols_from_json(self,path):
|
151 |
+
assert os.path.isfile(path)
|
152 |
+
with open(path, 'r') as f:
|
153 |
+
data = json.load(f)
|
154 |
+
return data['symbols']
|
155 |
+
|
156 |
+
def sle(self,language,text):
|
157 |
+
text = text.replace('\n','。').replace(' ',',')
|
158 |
+
if language == "中文":
|
159 |
+
tts_input1 = "[ZH]" + text + "[ZH]"
|
160 |
+
return tts_input1
|
161 |
+
elif language == "自动":
|
162 |
+
tts_input1 = f"[JA]{text}[JA]" if self.is_japanese(text) else f"[ZH]{text}[ZH]"
|
163 |
+
return tts_input1
|
164 |
+
elif language == "日文":
|
165 |
+
tts_input1 = "[JA]" + text + "[JA]"
|
166 |
+
return tts_input1
|
167 |
+
|
168 |
+
def get_text(self,text,hps_ms):
|
169 |
+
text_norm = text_to_sequence(text,hps_ms.data.text_cleaners)
|
170 |
+
if hps_ms.data.add_blank:
|
171 |
+
text_norm = commons.intersperse(text_norm, 0)
|
172 |
+
text_norm = torch.LongTensor(text_norm)
|
173 |
+
return text_norm
|
174 |
+
|
175 |
+
def create_tts_fn(self,path, input2, input3, n_scale= 0.667,n_scale_w = 0.8, l_scale = 1 ):
|
176 |
+
self.symbols = self.get_symbols_from_json(f"checkpoints/{path}/config.json")
|
177 |
+
self.hps = utils.get_hparams_from_file(f"checkpoints/{path}/config.json")
|
178 |
+
phone_dict = {
|
179 |
+
symbol: i for i, symbol in enumerate(self.symbols)
|
180 |
+
}
|
181 |
+
self.ort_sess = ort.InferenceSession(f"checkpoints/{path}/model.onnx")
|
182 |
+
self.language = input2
|
183 |
+
self.speaker_id = input3
|
184 |
+
self.n_scale = n_scale
|
185 |
+
self.n_scale_w = n_scale_w
|
186 |
+
self.l_scale = l_scale
|
187 |
+
print(self.language,self.speaker_id,self.n_scale)
|
188 |
+
return 'success'
|
189 |
+
|
190 |
+
def tts_fn(self,text):
|
191 |
+
if self.local_chat1:
|
192 |
+
text = self.chatgpt(text)
|
193 |
+
elif self.api_input2:
|
194 |
+
text = self.ChATGLM(text)
|
195 |
+
else:
|
196 |
+
text = self.gpt3_chat(text)
|
197 |
+
print(text)
|
198 |
+
text =self.sle(self.language,text)
|
199 |
+
seq = text_to_sequence(text, cleaner_names=self.hps.data.text_cleaners)
|
200 |
+
if self.hps.data.add_blank:
|
201 |
+
seq = commons.intersperse(seq, 0)
|
202 |
+
with torch.no_grad():
|
203 |
+
x = np.array([seq], dtype=np.int64)
|
204 |
+
x_len = np.array([x.shape[1]], dtype=np.int64)
|
205 |
+
sid = np.array([self.speaker_id], dtype=np.int64)
|
206 |
+
scales = np.array([self.n_scale, self.n_scale_w, self.l_scale], dtype=np.float32)
|
207 |
+
scales.resize(1, 3)
|
208 |
+
ort_inputs = {
|
209 |
+
'input': x,
|
210 |
+
'input_lengths': x_len,
|
211 |
+
'scales': scales,
|
212 |
+
'sid': sid
|
213 |
+
}
|
214 |
+
t1 = time.time()
|
215 |
+
audio = np.squeeze(self.ort_sess.run(None, ort_inputs))
|
216 |
+
audio *= 32767.0 / max(0.01, np.max(np.abs(audio))) * 0.6
|
217 |
+
audio = np.clip(audio, -32767.0, 32767.0)
|
218 |
+
t2 = time.time()
|
219 |
+
spending_time = "推理时间:"+str(t2-t1)+"s"
|
220 |
+
print(spending_time)
|
221 |
+
bytes_wav = bytes()
|
222 |
+
byte_io = io.BytesIO(bytes_wav)
|
223 |
+
wavfile.write('moe/temp1.wav',self.hps.data.sampling_rate, audio.astype(np.int16))
|
224 |
+
cmd = 'ffmpeg -y -i ' + 'moe/temp1.wav' + ' -ar 44100 ' + 'moe/temp2.wav'
|
225 |
+
os.system(cmd)
|
226 |
+
return (self.hps.data.sampling_rate, audio),text.replace('[JA]','').replace('[ZH]','')
|
227 |
+
|
228 |
+
app = Flask(__name__)
|
229 |
+
print("开始部署")
|
230 |
+
grVits = VitsGradio()
|
231 |
+
|
232 |
+
@app.route('/chat')
|
233 |
+
def text_api():
|
234 |
+
message = request.args.get('Text','')
|
235 |
+
audio,text = grVits.tts_fn(message)
|
236 |
+
text = text.replace('[JA]','').replace('[ZH]','')
|
237 |
+
with open('moe/temp2.wav','rb') as bit:
|
238 |
+
wav_bytes = bit.read()
|
239 |
+
headers = {
|
240 |
+
'Content-Type': 'audio/wav',
|
241 |
+
'Text': text.encode('utf-8')}
|
242 |
+
return wav_bytes, 200, headers
|
243 |
+
|
244 |
+
def gradio_interface():
|
245 |
+
return grVits.Vits.launch()
|
246 |
+
|
247 |
+
if __name__ == '__main__':
|
248 |
+
api_thread = Thread(target=app.run, args=("0.0.0.0", 8080))
|
249 |
+
gradio_thread = Thread(target=gradio_interface)
|
250 |
+
api_thread.start()
|
251 |
+
gradio_thread.start()
|
mel_processing.py
ADDED
@@ -0,0 +1,137 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn.functional as F
|
3 |
+
import torch.utils.data
|
4 |
+
from librosa.filters import mel as librosa_mel_fn
|
5 |
+
|
6 |
+
MAX_WAV_VALUE = 32768.0
|
7 |
+
|
8 |
+
|
9 |
+
def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
|
10 |
+
"""
|
11 |
+
PARAMS
|
12 |
+
------
|
13 |
+
C: compression factor
|
14 |
+
"""
|
15 |
+
return torch.log(torch.clamp(x, min=clip_val) * C)
|
16 |
+
|
17 |
+
|
18 |
+
def dynamic_range_decompression_torch(x, C=1):
|
19 |
+
"""
|
20 |
+
PARAMS
|
21 |
+
------
|
22 |
+
C: compression factor used to compress
|
23 |
+
"""
|
24 |
+
return torch.exp(x) / C
|
25 |
+
|
26 |
+
|
27 |
+
def spectral_normalize_torch(magnitudes):
|
28 |
+
output = dynamic_range_compression_torch(magnitudes)
|
29 |
+
return output
|
30 |
+
|
31 |
+
|
32 |
+
def spectral_de_normalize_torch(magnitudes):
|
33 |
+
output = dynamic_range_decompression_torch(magnitudes)
|
34 |
+
return output
|
35 |
+
|
36 |
+
|
37 |
+
mel_basis = {}
|
38 |
+
hann_window = {}
|
39 |
+
|
40 |
+
|
41 |
+
def spectrogram_torch(y,
|
42 |
+
n_fft,
|
43 |
+
sampling_rate,
|
44 |
+
hop_size,
|
45 |
+
win_size,
|
46 |
+
center=False):
|
47 |
+
if torch.min(y) < -1.:
|
48 |
+
print('min value is ', torch.min(y))
|
49 |
+
if torch.max(y) > 1.:
|
50 |
+
print('max value is ', torch.max(y))
|
51 |
+
|
52 |
+
global hann_window
|
53 |
+
dtype_device = str(y.dtype) + '_' + str(y.device)
|
54 |
+
wnsize_dtype_device = str(win_size) + '_' + dtype_device
|
55 |
+
if wnsize_dtype_device not in hann_window:
|
56 |
+
hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(
|
57 |
+
dtype=y.dtype, device=y.device)
|
58 |
+
|
59 |
+
y = F.pad(y.unsqueeze(1),
|
60 |
+
(int((n_fft - hop_size) / 2), int((n_fft - hop_size) / 2)),
|
61 |
+
mode='reflect')
|
62 |
+
y = y.squeeze(1)
|
63 |
+
|
64 |
+
spec = torch.stft(y,
|
65 |
+
n_fft,
|
66 |
+
hop_length=hop_size,
|
67 |
+
win_length=win_size,
|
68 |
+
window=hann_window[wnsize_dtype_device],
|
69 |
+
center=center,
|
70 |
+
pad_mode='reflect',
|
71 |
+
normalized=False,
|
72 |
+
onesided=True)
|
73 |
+
|
74 |
+
spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
|
75 |
+
return spec
|
76 |
+
|
77 |
+
|
78 |
+
def spec_to_mel_torch(spec, n_fft, num_mels, sampling_rate, fmin, fmax):
|
79 |
+
global mel_basis
|
80 |
+
dtype_device = str(spec.dtype) + '_' + str(spec.device)
|
81 |
+
fmax_dtype_device = str(fmax) + '_' + dtype_device
|
82 |
+
if fmax_dtype_device not in mel_basis:
|
83 |
+
mel = librosa_mel_fn(sampling_rate, n_fft, num_mels, fmin, fmax)
|
84 |
+
mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(
|
85 |
+
dtype=spec.dtype, device=spec.device)
|
86 |
+
spec = torch.matmul(mel_basis[fmax_dtype_device], spec)
|
87 |
+
spec = spectral_normalize_torch(spec)
|
88 |
+
return spec
|
89 |
+
|
90 |
+
|
91 |
+
def mel_spectrogram_torch(y,
|
92 |
+
n_fft,
|
93 |
+
num_mels,
|
94 |
+
sampling_rate,
|
95 |
+
hop_size,
|
96 |
+
win_size,
|
97 |
+
fmin,
|
98 |
+
fmax,
|
99 |
+
center=False):
|
100 |
+
if torch.min(y) < -1.:
|
101 |
+
print('min value is ', torch.min(y))
|
102 |
+
if torch.max(y) > 1.:
|
103 |
+
print('max value is ', torch.max(y))
|
104 |
+
|
105 |
+
global mel_basis, hann_window
|
106 |
+
dtype_device = str(y.dtype) + '_' + str(y.device)
|
107 |
+
fmax_dtype_device = str(fmax) + '_' + dtype_device
|
108 |
+
wnsize_dtype_device = str(win_size) + '_' + dtype_device
|
109 |
+
if fmax_dtype_device not in mel_basis:
|
110 |
+
mel = librosa_mel_fn(sampling_rate, n_fft, num_mels, fmin, fmax)
|
111 |
+
mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(
|
112 |
+
dtype=y.dtype, device=y.device)
|
113 |
+
if wnsize_dtype_device not in hann_window:
|
114 |
+
hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(
|
115 |
+
dtype=y.dtype, device=y.device)
|
116 |
+
|
117 |
+
y = F.pad(y.unsqueeze(1),
|
118 |
+
(int((n_fft - hop_size) / 2), int((n_fft - hop_size) / 2)),
|
119 |
+
mode='reflect')
|
120 |
+
y = y.squeeze(1)
|
121 |
+
|
122 |
+
spec = torch.stft(y,
|
123 |
+
n_fft,
|
124 |
+
hop_length=hop_size,
|
125 |
+
win_length=win_size,
|
126 |
+
window=hann_window[wnsize_dtype_device],
|
127 |
+
center=center,
|
128 |
+
pad_mode='reflect',
|
129 |
+
normalized=False,
|
130 |
+
onesided=True)
|
131 |
+
|
132 |
+
spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
|
133 |
+
|
134 |
+
spec = torch.matmul(mel_basis[fmax_dtype_device], spec)
|
135 |
+
spec = spectral_normalize_torch(spec)
|
136 |
+
|
137 |
+
return spec
|
models.py
CHANGED
@@ -2,18 +2,25 @@ import math
|
|
2 |
|
3 |
import torch
|
4 |
from torch import nn
|
5 |
-
from torch.nn import Conv1d, ConvTranspose1d, Conv2d
|
6 |
from torch.nn import functional as F
|
|
|
7 |
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
|
|
|
8 |
|
9 |
-
import attentions
|
10 |
import commons
|
11 |
import modules
|
|
|
12 |
from commons import init_weights, get_padding
|
13 |
|
14 |
|
15 |
class StochasticDurationPredictor(nn.Module):
|
16 |
-
def __init__(self,
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
super().__init__()
|
18 |
filter_channels = in_channels # it needs to be removed from future version.
|
19 |
self.in_channels = in_channels
|
@@ -27,25 +34,39 @@ class StochasticDurationPredictor(nn.Module):
|
|
27 |
self.flows = nn.ModuleList()
|
28 |
self.flows.append(modules.ElementwiseAffine(2))
|
29 |
for i in range(n_flows):
|
30 |
-
self.flows.append(
|
|
|
31 |
self.flows.append(modules.Flip())
|
32 |
|
33 |
self.post_pre = nn.Conv1d(1, filter_channels, 1)
|
34 |
self.post_proj = nn.Conv1d(filter_channels, filter_channels, 1)
|
35 |
-
self.post_convs = modules.DDSConv(filter_channels,
|
|
|
|
|
|
|
36 |
self.post_flows = nn.ModuleList()
|
37 |
self.post_flows.append(modules.ElementwiseAffine(2))
|
38 |
for i in range(4):
|
39 |
-
self.post_flows.append(
|
|
|
40 |
self.post_flows.append(modules.Flip())
|
41 |
|
42 |
self.pre = nn.Conv1d(in_channels, filter_channels, 1)
|
43 |
self.proj = nn.Conv1d(filter_channels, filter_channels, 1)
|
44 |
-
self.convs = modules.DDSConv(filter_channels,
|
|
|
|
|
|
|
45 |
if gin_channels != 0:
|
46 |
self.cond = nn.Conv1d(gin_channels, filter_channels, 1)
|
47 |
|
48 |
-
def forward(self,
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
x = torch.detach(x)
|
50 |
x = self.pre(x)
|
51 |
if g is not None:
|
@@ -62,7 +83,8 @@ class StochasticDurationPredictor(nn.Module):
|
|
62 |
h_w = self.post_pre(w)
|
63 |
h_w = self.post_convs(h_w, x_mask)
|
64 |
h_w = self.post_proj(h_w) * x_mask
|
65 |
-
e_q = torch.randn(w.size(0), 2, w.size(2)).to(
|
|
|
66 |
z_q = e_q
|
67 |
for flow in self.post_flows:
|
68 |
z_q, logdet_q = flow(z_q, x_mask, g=(x + h_w))
|
@@ -70,8 +92,11 @@ class StochasticDurationPredictor(nn.Module):
|
|
70 |
z_u, z1 = torch.split(z_q, [1, 1], 1)
|
71 |
u = torch.sigmoid(z_u) * x_mask
|
72 |
z0 = (w - u) * x_mask
|
73 |
-
logdet_tot_q += torch.sum(
|
74 |
-
|
|
|
|
|
|
|
75 |
|
76 |
logdet_tot = 0
|
77 |
z0, logdet = self.log_flow(z0, x_mask)
|
@@ -80,12 +105,14 @@ class StochasticDurationPredictor(nn.Module):
|
|
80 |
for flow in flows:
|
81 |
z, logdet = flow(z, x_mask, g=x, reverse=reverse)
|
82 |
logdet_tot = logdet_tot + logdet
|
83 |
-
nll = torch.sum(0.5 * (math.log(2 * math.pi) +
|
|
|
84 |
return nll + logq # [b]
|
85 |
else:
|
86 |
flows = list(reversed(self.flows))
|
87 |
flows = flows[:-2] + [flows[-1]] # remove a useless vflow
|
88 |
-
z = torch.randn(x.size(0), 2, x.size(2)).to(
|
|
|
89 |
for flow in flows:
|
90 |
z = flow(z, x_mask, g=x, reverse=reverse)
|
91 |
z0, z1 = torch.split(z, [1, 1], 1)
|
@@ -94,7 +121,12 @@ class StochasticDurationPredictor(nn.Module):
|
|
94 |
|
95 |
|
96 |
class DurationPredictor(nn.Module):
|
97 |
-
def __init__(self,
|
|
|
|
|
|
|
|
|
|
|
98 |
super().__init__()
|
99 |
|
100 |
self.in_channels = in_channels
|
@@ -104,9 +136,15 @@ class DurationPredictor(nn.Module):
|
|
104 |
self.gin_channels = gin_channels
|
105 |
|
106 |
self.drop = nn.Dropout(p_dropout)
|
107 |
-
self.conv_1 = nn.Conv1d(in_channels,
|
|
|
|
|
|
|
108 |
self.norm_1 = modules.LayerNorm(filter_channels)
|
109 |
-
self.conv_2 = nn.Conv1d(filter_channels,
|
|
|
|
|
|
|
110 |
self.norm_2 = modules.LayerNorm(filter_channels)
|
111 |
self.proj = nn.Conv1d(filter_channels, 1, 1)
|
112 |
|
@@ -131,15 +169,8 @@ class DurationPredictor(nn.Module):
|
|
131 |
|
132 |
|
133 |
class TextEncoder(nn.Module):
|
134 |
-
def __init__(self,
|
135 |
-
|
136 |
-
out_channels,
|
137 |
-
hidden_channels,
|
138 |
-
filter_channels,
|
139 |
-
n_heads,
|
140 |
-
n_layers,
|
141 |
-
kernel_size,
|
142 |
-
p_dropout):
|
143 |
super().__init__()
|
144 |
self.n_vocab = n_vocab
|
145 |
self.out_channels = out_channels
|
@@ -150,24 +181,19 @@ class TextEncoder(nn.Module):
|
|
150 |
self.kernel_size = kernel_size
|
151 |
self.p_dropout = p_dropout
|
152 |
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
filter_channels,
|
160 |
-
n_heads,
|
161 |
-
n_layers,
|
162 |
-
kernel_size,
|
163 |
-
p_dropout)
|
164 |
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
165 |
|
166 |
def forward(self, x, x_lengths):
|
167 |
-
|
168 |
-
x = self.emb(x) * math.sqrt(self.hidden_channels) # [b, t, h]
|
169 |
x = torch.transpose(x, 1, -1) # [b, h, t]
|
170 |
-
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)),
|
|
|
171 |
|
172 |
x = self.encoder(x * x_mask, x_mask)
|
173 |
stats = self.proj(x) * x_mask
|
@@ -197,8 +223,13 @@ class ResidualCouplingBlock(nn.Module):
|
|
197 |
self.flows = nn.ModuleList()
|
198 |
for i in range(n_flows):
|
199 |
self.flows.append(
|
200 |
-
modules.ResidualCouplingLayer(channels,
|
201 |
-
|
|
|
|
|
|
|
|
|
|
|
202 |
self.flows.append(modules.Flip())
|
203 |
|
204 |
def forward(self, x, x_mask, g=None, reverse=False):
|
@@ -230,11 +261,16 @@ class PosteriorEncoder(nn.Module):
|
|
230 |
self.gin_channels = gin_channels
|
231 |
|
232 |
self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
|
233 |
-
self.enc = modules.WN(hidden_channels,
|
|
|
|
|
|
|
|
|
234 |
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
235 |
|
236 |
def forward(self, x, x_lengths, g=None):
|
237 |
-
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)),
|
|
|
238 |
x = self.pre(x) * x_mask
|
239 |
x = self.enc(x, x_mask, g=g)
|
240 |
stats = self.proj(x) * x_mask
|
@@ -244,24 +280,40 @@ class PosteriorEncoder(nn.Module):
|
|
244 |
|
245 |
|
246 |
class Generator(torch.nn.Module):
|
247 |
-
def __init__(self,
|
248 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
249 |
super(Generator, self).__init__()
|
250 |
self.num_kernels = len(resblock_kernel_sizes)
|
251 |
self.num_upsamples = len(upsample_rates)
|
252 |
-
self.conv_pre = Conv1d(initial_channel,
|
|
|
|
|
|
|
|
|
253 |
resblock = modules.ResBlock1 if resblock == '1' else modules.ResBlock2
|
254 |
|
255 |
self.ups = nn.ModuleList()
|
256 |
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
|
257 |
-
self.ups.append(
|
258 |
-
|
259 |
-
|
|
|
|
|
|
|
|
|
260 |
|
261 |
self.resblocks = nn.ModuleList()
|
262 |
for i in range(len(self.ups)):
|
263 |
-
ch = upsample_initial_channel // (2
|
264 |
-
for j, (k, d) in enumerate(
|
|
|
265 |
self.resblocks.append(resblock(ch, k, d))
|
266 |
|
267 |
self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
|
@@ -300,17 +352,37 @@ class Generator(torch.nn.Module):
|
|
300 |
|
301 |
|
302 |
class DiscriminatorP(torch.nn.Module):
|
303 |
-
def __init__(self,
|
|
|
|
|
|
|
|
|
304 |
super(DiscriminatorP, self).__init__()
|
305 |
self.period = period
|
306 |
self.use_spectral_norm = use_spectral_norm
|
307 |
-
norm_f = weight_norm if use_spectral_norm
|
308 |
self.convs = nn.ModuleList([
|
309 |
-
norm_f(
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
norm_f(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
314 |
])
|
315 |
self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
|
316 |
|
@@ -339,7 +411,7 @@ class DiscriminatorP(torch.nn.Module):
|
|
339 |
class DiscriminatorS(torch.nn.Module):
|
340 |
def __init__(self, use_spectral_norm=False):
|
341 |
super(DiscriminatorS, self).__init__()
|
342 |
-
norm_f = weight_norm if use_spectral_norm
|
343 |
self.convs = nn.ModuleList([
|
344 |
norm_f(Conv1d(1, 16, 15, 1, padding=7)),
|
345 |
norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
|
@@ -370,7 +442,10 @@ class MultiPeriodDiscriminator(torch.nn.Module):
|
|
370 |
periods = [2, 3, 5, 7, 11]
|
371 |
|
372 |
discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
|
373 |
-
discs = discs + [
|
|
|
|
|
|
|
374 |
self.discriminators = nn.ModuleList(discs)
|
375 |
|
376 |
def forward(self, y, y_hat):
|
@@ -391,9 +466,8 @@ class MultiPeriodDiscriminator(torch.nn.Module):
|
|
391 |
|
392 |
class SynthesizerTrn(nn.Module):
|
393 |
"""
|
394 |
-
|
395 |
-
|
396 |
-
|
397 |
def __init__(self,
|
398 |
n_vocab,
|
399 |
spec_channels,
|
@@ -435,32 +509,116 @@ class SynthesizerTrn(nn.Module):
|
|
435 |
self.segment_size = segment_size
|
436 |
self.n_speakers = n_speakers
|
437 |
self.gin_channels = gin_channels
|
|
|
|
|
|
|
438 |
|
439 |
self.use_sdp = use_sdp
|
440 |
|
441 |
-
self.enc_p = TextEncoder(n_vocab,
|
442 |
-
|
443 |
-
|
444 |
-
|
445 |
-
|
446 |
-
|
447 |
-
|
448 |
-
|
449 |
-
|
450 |
-
|
451 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
452 |
gin_channels=gin_channels)
|
453 |
-
self.flow = ResidualCouplingBlock(inter_channels,
|
|
|
|
|
|
|
|
|
|
|
454 |
|
455 |
if use_sdp:
|
456 |
-
self.dp = StochasticDurationPredictor(hidden_channels,
|
|
|
|
|
|
|
|
|
|
|
457 |
else:
|
458 |
-
self.dp = DurationPredictor(hidden_channels,
|
|
|
|
|
|
|
|
|
459 |
|
460 |
if n_speakers > 1:
|
461 |
self.emb_g = nn.Embedding(n_speakers, gin_channels)
|
462 |
|
463 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
464 |
x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths)
|
465 |
if self.n_speakers > 0:
|
466 |
g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1]
|
@@ -468,25 +626,41 @@ class SynthesizerTrn(nn.Module):
|
|
468 |
g = None
|
469 |
|
470 |
if self.use_sdp:
|
471 |
-
logw = self.dp(x,
|
|
|
|
|
|
|
|
|
472 |
else:
|
473 |
logw = self.dp(x, x_mask, g=g)
|
474 |
w = torch.exp(logw) * x_mask * length_scale
|
475 |
w_ceil = torch.ceil(w)
|
476 |
y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long()
|
477 |
-
y_mask = torch.unsqueeze(commons.sequence_mask(y_lengths, None),
|
|
|
478 |
attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1)
|
479 |
attn = commons.generate_path(w_ceil, attn_mask)
|
480 |
|
481 |
-
m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose(
|
482 |
-
|
483 |
-
|
|
|
484 |
|
485 |
z_p = m_p + torch.randn_like(m_p) * torch.exp(logs_p) * noise_scale
|
486 |
z = self.flow(z_p, y_mask, g=g, reverse=True)
|
487 |
o = self.dec((z * y_mask)[:, :, :max_len], g=g)
|
488 |
return o, attn, y_mask, (z, z_p, m_p, logs_p)
|
489 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
490 |
def voice_conversion(self, y, y_lengths, sid_src, sid_tgt):
|
491 |
assert self.n_speakers > 0, "n_speakers have to be larger than 0."
|
492 |
g_src = self.emb_g(sid_src).unsqueeze(-1)
|
|
|
2 |
|
3 |
import torch
|
4 |
from torch import nn
|
|
|
5 |
from torch.nn import functional as F
|
6 |
+
from torch.nn import Conv1d, ConvTranspose1d, Conv2d
|
7 |
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
|
8 |
+
import monotonic_align
|
9 |
|
|
|
10 |
import commons
|
11 |
import modules
|
12 |
+
import attentions
|
13 |
from commons import init_weights, get_padding
|
14 |
|
15 |
|
16 |
class StochasticDurationPredictor(nn.Module):
|
17 |
+
def __init__(self,
|
18 |
+
in_channels,
|
19 |
+
filter_channels,
|
20 |
+
kernel_size,
|
21 |
+
p_dropout,
|
22 |
+
n_flows=4,
|
23 |
+
gin_channels=0):
|
24 |
super().__init__()
|
25 |
filter_channels = in_channels # it needs to be removed from future version.
|
26 |
self.in_channels = in_channels
|
|
|
34 |
self.flows = nn.ModuleList()
|
35 |
self.flows.append(modules.ElementwiseAffine(2))
|
36 |
for i in range(n_flows):
|
37 |
+
self.flows.append(
|
38 |
+
modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3))
|
39 |
self.flows.append(modules.Flip())
|
40 |
|
41 |
self.post_pre = nn.Conv1d(1, filter_channels, 1)
|
42 |
self.post_proj = nn.Conv1d(filter_channels, filter_channels, 1)
|
43 |
+
self.post_convs = modules.DDSConv(filter_channels,
|
44 |
+
kernel_size,
|
45 |
+
n_layers=3,
|
46 |
+
p_dropout=p_dropout)
|
47 |
self.post_flows = nn.ModuleList()
|
48 |
self.post_flows.append(modules.ElementwiseAffine(2))
|
49 |
for i in range(4):
|
50 |
+
self.post_flows.append(
|
51 |
+
modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3))
|
52 |
self.post_flows.append(modules.Flip())
|
53 |
|
54 |
self.pre = nn.Conv1d(in_channels, filter_channels, 1)
|
55 |
self.proj = nn.Conv1d(filter_channels, filter_channels, 1)
|
56 |
+
self.convs = modules.DDSConv(filter_channels,
|
57 |
+
kernel_size,
|
58 |
+
n_layers=3,
|
59 |
+
p_dropout=p_dropout)
|
60 |
if gin_channels != 0:
|
61 |
self.cond = nn.Conv1d(gin_channels, filter_channels, 1)
|
62 |
|
63 |
+
def forward(self,
|
64 |
+
x,
|
65 |
+
x_mask,
|
66 |
+
w=None,
|
67 |
+
g=None,
|
68 |
+
reverse=False,
|
69 |
+
noise_scale=1.0):
|
70 |
x = torch.detach(x)
|
71 |
x = self.pre(x)
|
72 |
if g is not None:
|
|
|
83 |
h_w = self.post_pre(w)
|
84 |
h_w = self.post_convs(h_w, x_mask)
|
85 |
h_w = self.post_proj(h_w) * x_mask
|
86 |
+
e_q = torch.randn(w.size(0), 2, w.size(2)).to(
|
87 |
+
device=x.device, dtype=x.dtype) * x_mask
|
88 |
z_q = e_q
|
89 |
for flow in self.post_flows:
|
90 |
z_q, logdet_q = flow(z_q, x_mask, g=(x + h_w))
|
|
|
92 |
z_u, z1 = torch.split(z_q, [1, 1], 1)
|
93 |
u = torch.sigmoid(z_u) * x_mask
|
94 |
z0 = (w - u) * x_mask
|
95 |
+
logdet_tot_q += torch.sum(
|
96 |
+
(F.logsigmoid(z_u) + F.logsigmoid(-z_u)) * x_mask, [1, 2])
|
97 |
+
logq = torch.sum(
|
98 |
+
-0.5 * (math.log(2 * math.pi) +
|
99 |
+
(e_q**2)) * x_mask, [1, 2]) - logdet_tot_q
|
100 |
|
101 |
logdet_tot = 0
|
102 |
z0, logdet = self.log_flow(z0, x_mask)
|
|
|
105 |
for flow in flows:
|
106 |
z, logdet = flow(z, x_mask, g=x, reverse=reverse)
|
107 |
logdet_tot = logdet_tot + logdet
|
108 |
+
nll = torch.sum(0.5 * (math.log(2 * math.pi) +
|
109 |
+
(z**2)) * x_mask, [1, 2]) - logdet_tot
|
110 |
return nll + logq # [b]
|
111 |
else:
|
112 |
flows = list(reversed(self.flows))
|
113 |
flows = flows[:-2] + [flows[-1]] # remove a useless vflow
|
114 |
+
z = torch.randn(x.size(0), 2, x.size(2)).to(
|
115 |
+
device=x.device, dtype=x.dtype) * noise_scale
|
116 |
for flow in flows:
|
117 |
z = flow(z, x_mask, g=x, reverse=reverse)
|
118 |
z0, z1 = torch.split(z, [1, 1], 1)
|
|
|
121 |
|
122 |
|
123 |
class DurationPredictor(nn.Module):
|
124 |
+
def __init__(self,
|
125 |
+
in_channels,
|
126 |
+
filter_channels,
|
127 |
+
kernel_size,
|
128 |
+
p_dropout,
|
129 |
+
gin_channels=0):
|
130 |
super().__init__()
|
131 |
|
132 |
self.in_channels = in_channels
|
|
|
136 |
self.gin_channels = gin_channels
|
137 |
|
138 |
self.drop = nn.Dropout(p_dropout)
|
139 |
+
self.conv_1 = nn.Conv1d(in_channels,
|
140 |
+
filter_channels,
|
141 |
+
kernel_size,
|
142 |
+
padding=kernel_size // 2)
|
143 |
self.norm_1 = modules.LayerNorm(filter_channels)
|
144 |
+
self.conv_2 = nn.Conv1d(filter_channels,
|
145 |
+
filter_channels,
|
146 |
+
kernel_size,
|
147 |
+
padding=kernel_size // 2)
|
148 |
self.norm_2 = modules.LayerNorm(filter_channels)
|
149 |
self.proj = nn.Conv1d(filter_channels, 1, 1)
|
150 |
|
|
|
169 |
|
170 |
|
171 |
class TextEncoder(nn.Module):
|
172 |
+
def __init__(self, n_vocab, out_channels, hidden_channels, filter_channels,
|
173 |
+
n_heads, n_layers, kernel_size, p_dropout):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
174 |
super().__init__()
|
175 |
self.n_vocab = n_vocab
|
176 |
self.out_channels = out_channels
|
|
|
181 |
self.kernel_size = kernel_size
|
182 |
self.p_dropout = p_dropout
|
183 |
|
184 |
+
self.emb = nn.Embedding(n_vocab, hidden_channels)
|
185 |
+
nn.init.normal_(self.emb.weight, 0.0, hidden_channels**-0.5)
|
186 |
+
|
187 |
+
self.encoder = attentions.Encoder(hidden_channels, filter_channels,
|
188 |
+
n_heads, n_layers, kernel_size,
|
189 |
+
p_dropout)
|
|
|
|
|
|
|
|
|
|
|
190 |
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
191 |
|
192 |
def forward(self, x, x_lengths):
|
193 |
+
x = self.emb(x) * math.sqrt(self.hidden_channels) # [b, t, h]
|
|
|
194 |
x = torch.transpose(x, 1, -1) # [b, h, t]
|
195 |
+
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)),
|
196 |
+
1).to(x.dtype)
|
197 |
|
198 |
x = self.encoder(x * x_mask, x_mask)
|
199 |
stats = self.proj(x) * x_mask
|
|
|
223 |
self.flows = nn.ModuleList()
|
224 |
for i in range(n_flows):
|
225 |
self.flows.append(
|
226 |
+
modules.ResidualCouplingLayer(channels,
|
227 |
+
hidden_channels,
|
228 |
+
kernel_size,
|
229 |
+
dilation_rate,
|
230 |
+
n_layers,
|
231 |
+
gin_channels=gin_channels,
|
232 |
+
mean_only=True))
|
233 |
self.flows.append(modules.Flip())
|
234 |
|
235 |
def forward(self, x, x_mask, g=None, reverse=False):
|
|
|
261 |
self.gin_channels = gin_channels
|
262 |
|
263 |
self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
|
264 |
+
self.enc = modules.WN(hidden_channels,
|
265 |
+
kernel_size,
|
266 |
+
dilation_rate,
|
267 |
+
n_layers,
|
268 |
+
gin_channels=gin_channels)
|
269 |
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
270 |
|
271 |
def forward(self, x, x_lengths, g=None):
|
272 |
+
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)),
|
273 |
+
1).to(x.dtype)
|
274 |
x = self.pre(x) * x_mask
|
275 |
x = self.enc(x, x_mask, g=g)
|
276 |
stats = self.proj(x) * x_mask
|
|
|
280 |
|
281 |
|
282 |
class Generator(torch.nn.Module):
|
283 |
+
def __init__(self,
|
284 |
+
initial_channel,
|
285 |
+
resblock,
|
286 |
+
resblock_kernel_sizes,
|
287 |
+
resblock_dilation_sizes,
|
288 |
+
upsample_rates,
|
289 |
+
upsample_initial_channel,
|
290 |
+
upsample_kernel_sizes,
|
291 |
+
gin_channels=0):
|
292 |
super(Generator, self).__init__()
|
293 |
self.num_kernels = len(resblock_kernel_sizes)
|
294 |
self.num_upsamples = len(upsample_rates)
|
295 |
+
self.conv_pre = Conv1d(initial_channel,
|
296 |
+
upsample_initial_channel,
|
297 |
+
7,
|
298 |
+
1,
|
299 |
+
padding=3)
|
300 |
resblock = modules.ResBlock1 if resblock == '1' else modules.ResBlock2
|
301 |
|
302 |
self.ups = nn.ModuleList()
|
303 |
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
|
304 |
+
self.ups.append(
|
305 |
+
weight_norm(
|
306 |
+
ConvTranspose1d(upsample_initial_channel // (2**i),
|
307 |
+
upsample_initial_channel // (2**(i + 1)),
|
308 |
+
k,
|
309 |
+
u,
|
310 |
+
padding=(k - u) // 2)))
|
311 |
|
312 |
self.resblocks = nn.ModuleList()
|
313 |
for i in range(len(self.ups)):
|
314 |
+
ch = upsample_initial_channel // (2**(i + 1))
|
315 |
+
for j, (k, d) in enumerate(
|
316 |
+
zip(resblock_kernel_sizes, resblock_dilation_sizes)):
|
317 |
self.resblocks.append(resblock(ch, k, d))
|
318 |
|
319 |
self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
|
|
|
352 |
|
353 |
|
354 |
class DiscriminatorP(torch.nn.Module):
|
355 |
+
def __init__(self,
|
356 |
+
period,
|
357 |
+
kernel_size=5,
|
358 |
+
stride=3,
|
359 |
+
use_spectral_norm=False):
|
360 |
super(DiscriminatorP, self).__init__()
|
361 |
self.period = period
|
362 |
self.use_spectral_norm = use_spectral_norm
|
363 |
+
norm_f = weight_norm if use_spectral_norm is False else spectral_norm
|
364 |
self.convs = nn.ModuleList([
|
365 |
+
norm_f(
|
366 |
+
Conv2d(1,
|
367 |
+
32, (kernel_size, 1), (stride, 1),
|
368 |
+
padding=(get_padding(kernel_size, 1), 0))),
|
369 |
+
norm_f(
|
370 |
+
Conv2d(32,
|
371 |
+
128, (kernel_size, 1), (stride, 1),
|
372 |
+
padding=(get_padding(kernel_size, 1), 0))),
|
373 |
+
norm_f(
|
374 |
+
Conv2d(128,
|
375 |
+
512, (kernel_size, 1), (stride, 1),
|
376 |
+
padding=(get_padding(kernel_size, 1), 0))),
|
377 |
+
norm_f(
|
378 |
+
Conv2d(512,
|
379 |
+
1024, (kernel_size, 1), (stride, 1),
|
380 |
+
padding=(get_padding(kernel_size, 1), 0))),
|
381 |
+
norm_f(
|
382 |
+
Conv2d(1024,
|
383 |
+
1024, (kernel_size, 1),
|
384 |
+
1,
|
385 |
+
padding=(get_padding(kernel_size, 1), 0))),
|
386 |
])
|
387 |
self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
|
388 |
|
|
|
411 |
class DiscriminatorS(torch.nn.Module):
|
412 |
def __init__(self, use_spectral_norm=False):
|
413 |
super(DiscriminatorS, self).__init__()
|
414 |
+
norm_f = weight_norm if use_spectral_norm is False else spectral_norm
|
415 |
self.convs = nn.ModuleList([
|
416 |
norm_f(Conv1d(1, 16, 15, 1, padding=7)),
|
417 |
norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
|
|
|
442 |
periods = [2, 3, 5, 7, 11]
|
443 |
|
444 |
discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
|
445 |
+
discs = discs + [
|
446 |
+
DiscriminatorP(i, use_spectral_norm=use_spectral_norm)
|
447 |
+
for i in periods
|
448 |
+
]
|
449 |
self.discriminators = nn.ModuleList(discs)
|
450 |
|
451 |
def forward(self, y, y_hat):
|
|
|
466 |
|
467 |
class SynthesizerTrn(nn.Module):
|
468 |
"""
|
469 |
+
Synthesizer for Training
|
470 |
+
"""
|
|
|
471 |
def __init__(self,
|
472 |
n_vocab,
|
473 |
spec_channels,
|
|
|
509 |
self.segment_size = segment_size
|
510 |
self.n_speakers = n_speakers
|
511 |
self.gin_channels = gin_channels
|
512 |
+
if self.n_speakers != 0:
|
513 |
+
message = "gin_channels must be none zero for multiple speakers"
|
514 |
+
assert gin_channels != 0, message
|
515 |
|
516 |
self.use_sdp = use_sdp
|
517 |
|
518 |
+
self.enc_p = TextEncoder(n_vocab, inter_channels, hidden_channels,
|
519 |
+
filter_channels, n_heads, n_layers,
|
520 |
+
kernel_size, p_dropout)
|
521 |
+
self.dec = Generator(inter_channels,
|
522 |
+
resblock,
|
523 |
+
resblock_kernel_sizes,
|
524 |
+
resblock_dilation_sizes,
|
525 |
+
upsample_rates,
|
526 |
+
upsample_initial_channel,
|
527 |
+
upsample_kernel_sizes,
|
528 |
+
gin_channels=gin_channels)
|
529 |
+
self.enc_q = PosteriorEncoder(spec_channels,
|
530 |
+
inter_channels,
|
531 |
+
hidden_channels,
|
532 |
+
5,
|
533 |
+
1,
|
534 |
+
16,
|
535 |
gin_channels=gin_channels)
|
536 |
+
self.flow = ResidualCouplingBlock(inter_channels,
|
537 |
+
hidden_channels,
|
538 |
+
5,
|
539 |
+
1,
|
540 |
+
4,
|
541 |
+
gin_channels=gin_channels)
|
542 |
|
543 |
if use_sdp:
|
544 |
+
self.dp = StochasticDurationPredictor(hidden_channels,
|
545 |
+
192,
|
546 |
+
3,
|
547 |
+
0.5,
|
548 |
+
4,
|
549 |
+
gin_channels=gin_channels)
|
550 |
else:
|
551 |
+
self.dp = DurationPredictor(hidden_channels,
|
552 |
+
256,
|
553 |
+
3,
|
554 |
+
0.5,
|
555 |
+
gin_channels=gin_channels)
|
556 |
|
557 |
if n_speakers > 1:
|
558 |
self.emb_g = nn.Embedding(n_speakers, gin_channels)
|
559 |
|
560 |
+
def forward(self, x, x_lengths, y, y_lengths, sid=None):
|
561 |
+
|
562 |
+
x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths)
|
563 |
+
if self.n_speakers > 0:
|
564 |
+
g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1]
|
565 |
+
else:
|
566 |
+
g = None
|
567 |
+
|
568 |
+
z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
|
569 |
+
z_p = self.flow(z, y_mask, g=g)
|
570 |
+
|
571 |
+
with torch.no_grad():
|
572 |
+
# negative cross-entropy
|
573 |
+
s_p_sq_r = torch.exp(-2 * logs_p) # [b, d, t]
|
574 |
+
neg_cent1 = torch.sum(-0.5 * math.log(2 * math.pi) - logs_p, [1],
|
575 |
+
keepdim=True) # [b, 1, t_s]
|
576 |
+
neg_cent2 = torch.matmul(
|
577 |
+
-0.5 * (z_p**2).transpose(1, 2),
|
578 |
+
s_p_sq_r) # [b, t_t, d] x [b, d, t_s] = [b, t_t, t_s]
|
579 |
+
neg_cent3 = torch.matmul(
|
580 |
+
z_p.transpose(1, 2),
|
581 |
+
(m_p * s_p_sq_r)) # [b, t_t, d] x [b, d, t_s] = [b, t_t, t_s]
|
582 |
+
neg_cent4 = torch.sum(-0.5 * (m_p**2) * s_p_sq_r, [1],
|
583 |
+
keepdim=True) # [b, 1, t_s]
|
584 |
+
neg_cent = neg_cent1 + neg_cent2 + neg_cent3 + neg_cent4
|
585 |
+
|
586 |
+
attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(
|
587 |
+
y_mask, -1)
|
588 |
+
attn = monotonic_align.maximum_path(
|
589 |
+
neg_cent, attn_mask.squeeze(1)).unsqueeze(1).detach()
|
590 |
+
|
591 |
+
w = attn.sum(2)
|
592 |
+
if self.use_sdp:
|
593 |
+
l_length = self.dp(x, x_mask, w, g=g)
|
594 |
+
l_length = l_length / torch.sum(x_mask)
|
595 |
+
else:
|
596 |
+
logw_ = torch.log(w + 1e-6) * x_mask
|
597 |
+
logw = self.dp(x, x_mask, g=g)
|
598 |
+
l_length = torch.sum(
|
599 |
+
(logw - logw_)**2, [1, 2]) / torch.sum(x_mask) # for averaging
|
600 |
+
|
601 |
+
# expand prior
|
602 |
+
m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1,
|
603 |
+
2)).transpose(1, 2)
|
604 |
+
logs_p = torch.matmul(attn.squeeze(1),
|
605 |
+
logs_p.transpose(1, 2)).transpose(1, 2)
|
606 |
+
|
607 |
+
z_slice, ids_slice = commons.rand_slice_segments(
|
608 |
+
z, y_lengths, self.segment_size)
|
609 |
+
o = self.dec(z_slice, g=g)
|
610 |
+
return o, l_length, attn, ids_slice, x_mask, y_mask, (z, z_p, m_p,
|
611 |
+
logs_p, m_q,
|
612 |
+
logs_q)
|
613 |
+
|
614 |
+
def infer(self,
|
615 |
+
x,
|
616 |
+
x_lengths,
|
617 |
+
sid=None,
|
618 |
+
noise_scale=1,
|
619 |
+
length_scale=1,
|
620 |
+
noise_scale_w=1.,
|
621 |
+
max_len=None):
|
622 |
x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths)
|
623 |
if self.n_speakers > 0:
|
624 |
g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1]
|
|
|
626 |
g = None
|
627 |
|
628 |
if self.use_sdp:
|
629 |
+
logw = self.dp(x,
|
630 |
+
x_mask,
|
631 |
+
g=g,
|
632 |
+
reverse=True,
|
633 |
+
noise_scale=noise_scale_w)
|
634 |
else:
|
635 |
logw = self.dp(x, x_mask, g=g)
|
636 |
w = torch.exp(logw) * x_mask * length_scale
|
637 |
w_ceil = torch.ceil(w)
|
638 |
y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long()
|
639 |
+
y_mask = torch.unsqueeze(commons.sequence_mask(y_lengths, None),
|
640 |
+
1).to(x_mask.dtype)
|
641 |
attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1)
|
642 |
attn = commons.generate_path(w_ceil, attn_mask)
|
643 |
|
644 |
+
m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose(
|
645 |
+
1, 2) # [b, t', t], [b, t, d] -> [b, d, t']
|
646 |
+
logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(
|
647 |
+
1, 2)).transpose(1, 2) # [b, t', t], [b, t, d] -> [b, d, t']
|
648 |
|
649 |
z_p = m_p + torch.randn_like(m_p) * torch.exp(logs_p) * noise_scale
|
650 |
z = self.flow(z_p, y_mask, g=g, reverse=True)
|
651 |
o = self.dec((z * y_mask)[:, :, :max_len], g=g)
|
652 |
return o, attn, y_mask, (z, z_p, m_p, logs_p)
|
653 |
|
654 |
+
def export_forward(self, x, x_lengths, scales, sid):
|
655 |
+
# shape of scales: Bx3, make triton happy
|
656 |
+
audio, *_ = self.infer(x,
|
657 |
+
x_lengths,
|
658 |
+
sid,
|
659 |
+
noise_scale=scales[0][0],
|
660 |
+
length_scale=scales[0][1],
|
661 |
+
noise_scale_w=scales[0][2])
|
662 |
+
return audio
|
663 |
+
|
664 |
def voice_conversion(self, y, y_lengths, sid_src, sid_tgt):
|
665 |
assert self.n_speakers > 0, "n_speakers have to be larger than 0."
|
666 |
g_src = self.emb_g(sid_src).unsqueeze(-1)
|
modules.py
CHANGED
@@ -1,8 +1,8 @@
|
|
1 |
import math
|
|
|
2 |
import torch
|
3 |
from torch import nn
|
4 |
from torch.nn import functional as F
|
5 |
-
|
6 |
from torch.nn import Conv1d
|
7 |
from torch.nn.utils import weight_norm, remove_weight_norm
|
8 |
|
@@ -10,197 +10,249 @@ import commons
|
|
10 |
from commons import init_weights, get_padding
|
11 |
from transforms import piecewise_rational_quadratic_transform
|
12 |
|
13 |
-
|
14 |
LRELU_SLOPE = 0.1
|
15 |
|
16 |
|
17 |
class LayerNorm(nn.Module):
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
|
23 |
-
|
24 |
-
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
-
def forward(self, x):
|
27 |
-
x = x.transpose(1, -1)
|
28 |
-
x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
|
29 |
-
return x.transpose(1, -1)
|
30 |
|
31 |
-
|
32 |
class ConvReluNorm(nn.Module):
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
|
66 |
|
67 |
class DDSConv(nn.Module):
|
68 |
-
|
69 |
Dialted and Depth-Separable Convolution
|
70 |
"""
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
|
|
|
|
|
|
|
|
106 |
|
107 |
|
108 |
class WN(torch.nn.Module):
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
182 |
|
183 |
|
184 |
class ResBlock1(torch.nn.Module):
|
185 |
def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)):
|
186 |
super(ResBlock1, self).__init__()
|
187 |
self.convs1 = nn.ModuleList([
|
188 |
-
weight_norm(
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
194 |
])
|
195 |
self.convs1.apply(init_weights)
|
196 |
|
197 |
self.convs2 = nn.ModuleList([
|
198 |
-
weight_norm(
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
204 |
])
|
205 |
self.convs2.apply(init_weights)
|
206 |
|
@@ -230,10 +282,20 @@ class ResBlock2(torch.nn.Module):
|
|
230 |
def __init__(self, channels, kernel_size=3, dilation=(1, 3)):
|
231 |
super(ResBlock2, self).__init__()
|
232 |
self.convs = nn.ModuleList([
|
233 |
-
weight_norm(
|
234 |
-
|
235 |
-
|
236 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
237 |
])
|
238 |
self.convs.apply(init_weights)
|
239 |
|
@@ -254,134 +316,154 @@ class ResBlock2(torch.nn.Module):
|
|
254 |
|
255 |
|
256 |
class Log(nn.Module):
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
|
267 |
class Flip(nn.Module):
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
|
276 |
|
277 |
class ElementwiseAffine(nn.Module):
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
|
294 |
|
295 |
class ResidualCouplingLayer(nn.Module):
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
341 |
|
342 |
|
343 |
class ConvFlow(nn.Module):
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
|
364 |
-
|
365 |
-
|
366 |
-
|
367 |
-
|
368 |
-
|
369 |
-
|
370 |
-
|
371 |
-
|
372 |
-
|
373 |
-
|
374 |
-
|
375 |
-
|
376 |
-
|
377 |
-
|
378 |
-
|
379 |
-
|
380 |
-
|
381 |
-
|
382 |
-
|
383 |
-
|
384 |
-
|
385 |
-
|
386 |
-
|
387 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import math
|
2 |
+
|
3 |
import torch
|
4 |
from torch import nn
|
5 |
from torch.nn import functional as F
|
|
|
6 |
from torch.nn import Conv1d
|
7 |
from torch.nn.utils import weight_norm, remove_weight_norm
|
8 |
|
|
|
10 |
from commons import init_weights, get_padding
|
11 |
from transforms import piecewise_rational_quadratic_transform
|
12 |
|
|
|
13 |
LRELU_SLOPE = 0.1
|
14 |
|
15 |
|
16 |
class LayerNorm(nn.Module):
|
17 |
+
def __init__(self, channels, eps=1e-5):
|
18 |
+
super().__init__()
|
19 |
+
self.channels = channels
|
20 |
+
self.eps = eps
|
21 |
|
22 |
+
self.gamma = nn.Parameter(torch.ones(channels))
|
23 |
+
self.beta = nn.Parameter(torch.zeros(channels))
|
24 |
+
|
25 |
+
def forward(self, x):
|
26 |
+
x = x.transpose(1, -1)
|
27 |
+
x = F.layer_norm(x, (self.channels, ), self.gamma, self.beta, self.eps)
|
28 |
+
return x.transpose(1, -1)
|
29 |
|
|
|
|
|
|
|
|
|
30 |
|
|
|
31 |
class ConvReluNorm(nn.Module):
|
32 |
+
def __init__(self, in_channels, hidden_channels, out_channels, kernel_size,
|
33 |
+
n_layers, p_dropout):
|
34 |
+
super().__init__()
|
35 |
+
self.in_channels = in_channels
|
36 |
+
self.hidden_channels = hidden_channels
|
37 |
+
self.out_channels = out_channels
|
38 |
+
self.kernel_size = kernel_size
|
39 |
+
self.n_layers = n_layers
|
40 |
+
self.p_dropout = p_dropout
|
41 |
+
assert n_layers > 1, "Number of layers should be larger than 0."
|
42 |
+
|
43 |
+
self.conv_layers = nn.ModuleList()
|
44 |
+
self.norm_layers = nn.ModuleList()
|
45 |
+
self.conv_layers.append(
|
46 |
+
nn.Conv1d(in_channels,
|
47 |
+
hidden_channels,
|
48 |
+
kernel_size,
|
49 |
+
padding=kernel_size // 2))
|
50 |
+
self.norm_layers.append(LayerNorm(hidden_channels))
|
51 |
+
self.relu_drop = nn.Sequential(nn.ReLU(), nn.Dropout(p_dropout))
|
52 |
+
for _ in range(n_layers - 1):
|
53 |
+
self.conv_layers.append(
|
54 |
+
nn.Conv1d(hidden_channels,
|
55 |
+
hidden_channels,
|
56 |
+
kernel_size,
|
57 |
+
padding=kernel_size // 2))
|
58 |
+
self.norm_layers.append(LayerNorm(hidden_channels))
|
59 |
+
self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
|
60 |
+
self.proj.weight.data.zero_()
|
61 |
+
self.proj.bias.data.zero_()
|
62 |
+
|
63 |
+
def forward(self, x, x_mask):
|
64 |
+
x_org = x
|
65 |
+
for i in range(self.n_layers):
|
66 |
+
x = self.conv_layers[i](x * x_mask)
|
67 |
+
x = self.norm_layers[i](x)
|
68 |
+
x = self.relu_drop(x)
|
69 |
+
x = x_org + self.proj(x)
|
70 |
+
return x * x_mask
|
71 |
|
72 |
|
73 |
class DDSConv(nn.Module):
|
74 |
+
"""
|
75 |
Dialted and Depth-Separable Convolution
|
76 |
"""
|
77 |
+
def __init__(self, channels, kernel_size, n_layers, p_dropout=0.):
|
78 |
+
super().__init__()
|
79 |
+
self.channels = channels
|
80 |
+
self.kernel_size = kernel_size
|
81 |
+
self.n_layers = n_layers
|
82 |
+
self.p_dropout = p_dropout
|
83 |
+
|
84 |
+
self.drop = nn.Dropout(p_dropout)
|
85 |
+
self.convs_sep = nn.ModuleList()
|
86 |
+
self.convs_1x1 = nn.ModuleList()
|
87 |
+
self.norms_1 = nn.ModuleList()
|
88 |
+
self.norms_2 = nn.ModuleList()
|
89 |
+
for i in range(n_layers):
|
90 |
+
dilation = kernel_size**i
|
91 |
+
padding = (kernel_size * dilation - dilation) // 2
|
92 |
+
self.convs_sep.append(
|
93 |
+
nn.Conv1d(channels,
|
94 |
+
channels,
|
95 |
+
kernel_size,
|
96 |
+
groups=channels,
|
97 |
+
dilation=dilation,
|
98 |
+
padding=padding))
|
99 |
+
self.convs_1x1.append(nn.Conv1d(channels, channels, 1))
|
100 |
+
self.norms_1.append(LayerNorm(channels))
|
101 |
+
self.norms_2.append(LayerNorm(channels))
|
102 |
+
|
103 |
+
def forward(self, x, x_mask, g=None):
|
104 |
+
if g is not None:
|
105 |
+
x = x + g
|
106 |
+
for i in range(self.n_layers):
|
107 |
+
y = self.convs_sep[i](x * x_mask)
|
108 |
+
y = self.norms_1[i](y)
|
109 |
+
y = F.gelu(y)
|
110 |
+
y = self.convs_1x1[i](y)
|
111 |
+
y = self.norms_2[i](y)
|
112 |
+
y = F.gelu(y)
|
113 |
+
y = self.drop(y)
|
114 |
+
x = x + y
|
115 |
+
return x * x_mask
|
116 |
|
117 |
|
118 |
class WN(torch.nn.Module):
|
119 |
+
def __init__(self,
|
120 |
+
hidden_channels,
|
121 |
+
kernel_size,
|
122 |
+
dilation_rate,
|
123 |
+
n_layers,
|
124 |
+
gin_channels=0,
|
125 |
+
p_dropout=0):
|
126 |
+
super(WN, self).__init__()
|
127 |
+
assert (kernel_size % 2 == 1)
|
128 |
+
self.hidden_channels = hidden_channels
|
129 |
+
self.kernel_size = kernel_size,
|
130 |
+
self.dilation_rate = dilation_rate
|
131 |
+
self.n_layers = n_layers
|
132 |
+
self.gin_channels = gin_channels
|
133 |
+
self.p_dropout = p_dropout
|
134 |
+
|
135 |
+
self.in_layers = torch.nn.ModuleList()
|
136 |
+
self.res_skip_layers = torch.nn.ModuleList()
|
137 |
+
self.drop = nn.Dropout(p_dropout)
|
138 |
+
|
139 |
+
if gin_channels != 0:
|
140 |
+
cond_layer = torch.nn.Conv1d(gin_channels,
|
141 |
+
2 * hidden_channels * n_layers, 1)
|
142 |
+
self.cond_layer = torch.nn.utils.weight_norm(cond_layer,
|
143 |
+
name='weight')
|
144 |
+
|
145 |
+
for i in range(n_layers):
|
146 |
+
dilation = dilation_rate**i
|
147 |
+
padding = int((kernel_size * dilation - dilation) / 2)
|
148 |
+
in_layer = torch.nn.Conv1d(hidden_channels,
|
149 |
+
2 * hidden_channels,
|
150 |
+
kernel_size,
|
151 |
+
dilation=dilation,
|
152 |
+
padding=padding)
|
153 |
+
in_layer = torch.nn.utils.weight_norm(in_layer, name='weight')
|
154 |
+
self.in_layers.append(in_layer)
|
155 |
+
|
156 |
+
# last one is not necessary
|
157 |
+
if i < n_layers - 1:
|
158 |
+
res_skip_channels = 2 * hidden_channels
|
159 |
+
else:
|
160 |
+
res_skip_channels = hidden_channels
|
161 |
+
|
162 |
+
res_skip_layer = torch.nn.Conv1d(hidden_channels,
|
163 |
+
res_skip_channels, 1)
|
164 |
+
res_skip_layer = torch.nn.utils.weight_norm(res_skip_layer,
|
165 |
+
name='weight')
|
166 |
+
self.res_skip_layers.append(res_skip_layer)
|
167 |
+
|
168 |
+
def forward(self, x, x_mask, g=None, **kwargs):
|
169 |
+
output = torch.zeros_like(x)
|
170 |
+
n_channels_tensor = torch.IntTensor([self.hidden_channels])
|
171 |
+
|
172 |
+
if g is not None:
|
173 |
+
g = self.cond_layer(g)
|
174 |
+
|
175 |
+
for i in range(self.n_layers):
|
176 |
+
x_in = self.in_layers[i](x)
|
177 |
+
if g is not None:
|
178 |
+
cond_offset = i * 2 * self.hidden_channels
|
179 |
+
g_l = g[:,
|
180 |
+
cond_offset:cond_offset + 2 * self.hidden_channels, :]
|
181 |
+
else:
|
182 |
+
g_l = torch.zeros_like(x_in)
|
183 |
+
|
184 |
+
acts = commons.fused_add_tanh_sigmoid_multiply(
|
185 |
+
x_in, g_l, n_channels_tensor)
|
186 |
+
acts = self.drop(acts)
|
187 |
+
|
188 |
+
res_skip_acts = self.res_skip_layers[i](acts)
|
189 |
+
if i < self.n_layers - 1:
|
190 |
+
res_acts = res_skip_acts[:, :self.hidden_channels, :]
|
191 |
+
x = (x + res_acts) * x_mask
|
192 |
+
output = output + res_skip_acts[:, self.hidden_channels:, :]
|
193 |
+
else:
|
194 |
+
output = output + res_skip_acts
|
195 |
+
return output * x_mask
|
196 |
+
|
197 |
+
def remove_weight_norm(self):
|
198 |
+
if self.gin_channels != 0:
|
199 |
+
torch.nn.utils.remove_weight_norm(self.cond_layer)
|
200 |
+
for l in self.in_layers:
|
201 |
+
torch.nn.utils.remove_weight_norm(l)
|
202 |
+
for l in self.res_skip_layers:
|
203 |
+
torch.nn.utils.remove_weight_norm(l)
|
204 |
|
205 |
|
206 |
class ResBlock1(torch.nn.Module):
|
207 |
def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)):
|
208 |
super(ResBlock1, self).__init__()
|
209 |
self.convs1 = nn.ModuleList([
|
210 |
+
weight_norm(
|
211 |
+
Conv1d(channels,
|
212 |
+
channels,
|
213 |
+
kernel_size,
|
214 |
+
1,
|
215 |
+
dilation=dilation[0],
|
216 |
+
padding=get_padding(kernel_size, dilation[0]))),
|
217 |
+
weight_norm(
|
218 |
+
Conv1d(channels,
|
219 |
+
channels,
|
220 |
+
kernel_size,
|
221 |
+
1,
|
222 |
+
dilation=dilation[1],
|
223 |
+
padding=get_padding(kernel_size, dilation[1]))),
|
224 |
+
weight_norm(
|
225 |
+
Conv1d(channels,
|
226 |
+
channels,
|
227 |
+
kernel_size,
|
228 |
+
1,
|
229 |
+
dilation=dilation[2],
|
230 |
+
padding=get_padding(kernel_size, dilation[2])))
|
231 |
])
|
232 |
self.convs1.apply(init_weights)
|
233 |
|
234 |
self.convs2 = nn.ModuleList([
|
235 |
+
weight_norm(
|
236 |
+
Conv1d(channels,
|
237 |
+
channels,
|
238 |
+
kernel_size,
|
239 |
+
1,
|
240 |
+
dilation=1,
|
241 |
+
padding=get_padding(kernel_size, 1))),
|
242 |
+
weight_norm(
|
243 |
+
Conv1d(channels,
|
244 |
+
channels,
|
245 |
+
kernel_size,
|
246 |
+
1,
|
247 |
+
dilation=1,
|
248 |
+
padding=get_padding(kernel_size, 1))),
|
249 |
+
weight_norm(
|
250 |
+
Conv1d(channels,
|
251 |
+
channels,
|
252 |
+
kernel_size,
|
253 |
+
1,
|
254 |
+
dilation=1,
|
255 |
+
padding=get_padding(kernel_size, 1)))
|
256 |
])
|
257 |
self.convs2.apply(init_weights)
|
258 |
|
|
|
282 |
def __init__(self, channels, kernel_size=3, dilation=(1, 3)):
|
283 |
super(ResBlock2, self).__init__()
|
284 |
self.convs = nn.ModuleList([
|
285 |
+
weight_norm(
|
286 |
+
Conv1d(channels,
|
287 |
+
channels,
|
288 |
+
kernel_size,
|
289 |
+
1,
|
290 |
+
dilation=dilation[0],
|
291 |
+
padding=get_padding(kernel_size, dilation[0]))),
|
292 |
+
weight_norm(
|
293 |
+
Conv1d(channels,
|
294 |
+
channels,
|
295 |
+
kernel_size,
|
296 |
+
1,
|
297 |
+
dilation=dilation[1],
|
298 |
+
padding=get_padding(kernel_size, dilation[1])))
|
299 |
])
|
300 |
self.convs.apply(init_weights)
|
301 |
|
|
|
316 |
|
317 |
|
318 |
class Log(nn.Module):
|
319 |
+
def forward(self, x, x_mask, reverse=False, **kwargs):
|
320 |
+
if not reverse:
|
321 |
+
y = torch.log(torch.clamp_min(x, 1e-5)) * x_mask
|
322 |
+
logdet = torch.sum(-y, [1, 2])
|
323 |
+
return y, logdet
|
324 |
+
else:
|
325 |
+
x = torch.exp(x) * x_mask
|
326 |
+
return x
|
327 |
+
|
328 |
|
329 |
class Flip(nn.Module):
|
330 |
+
def forward(self, x, *args, reverse=False, **kwargs):
|
331 |
+
x = torch.flip(x, [1])
|
332 |
+
if not reverse:
|
333 |
+
logdet = torch.zeros(x.size(0)).to(dtype=x.dtype, device=x.device)
|
334 |
+
return x, logdet
|
335 |
+
else:
|
336 |
+
return x
|
337 |
|
338 |
|
339 |
class ElementwiseAffine(nn.Module):
|
340 |
+
def __init__(self, channels):
|
341 |
+
super().__init__()
|
342 |
+
self.channels = channels
|
343 |
+
self.m = nn.Parameter(torch.zeros(channels, 1))
|
344 |
+
self.logs = nn.Parameter(torch.zeros(channels, 1))
|
345 |
+
|
346 |
+
def forward(self, x, x_mask, reverse=False, **kwargs):
|
347 |
+
if not reverse:
|
348 |
+
y = self.m + torch.exp(self.logs) * x
|
349 |
+
y = y * x_mask
|
350 |
+
logdet = torch.sum(self.logs * x_mask, [1, 2])
|
351 |
+
return y, logdet
|
352 |
+
else:
|
353 |
+
x = (x - self.m) * torch.exp(-self.logs) * x_mask
|
354 |
+
return x
|
355 |
|
356 |
|
357 |
class ResidualCouplingLayer(nn.Module):
|
358 |
+
def __init__(self,
|
359 |
+
channels,
|
360 |
+
hidden_channels,
|
361 |
+
kernel_size,
|
362 |
+
dilation_rate,
|
363 |
+
n_layers,
|
364 |
+
p_dropout=0,
|
365 |
+
gin_channels=0,
|
366 |
+
mean_only=False):
|
367 |
+
assert channels % 2 == 0, "channels should be divisible by 2"
|
368 |
+
super().__init__()
|
369 |
+
self.channels = channels
|
370 |
+
self.hidden_channels = hidden_channels
|
371 |
+
self.kernel_size = kernel_size
|
372 |
+
self.dilation_rate = dilation_rate
|
373 |
+
self.n_layers = n_layers
|
374 |
+
self.half_channels = channels // 2
|
375 |
+
self.mean_only = mean_only
|
376 |
+
|
377 |
+
self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1)
|
378 |
+
self.enc = WN(hidden_channels,
|
379 |
+
kernel_size,
|
380 |
+
dilation_rate,
|
381 |
+
n_layers,
|
382 |
+
p_dropout=p_dropout,
|
383 |
+
gin_channels=gin_channels)
|
384 |
+
self.post = nn.Conv1d(hidden_channels,
|
385 |
+
self.half_channels * (2 - mean_only), 1)
|
386 |
+
self.post.weight.data.zero_()
|
387 |
+
self.post.bias.data.zero_()
|
388 |
+
|
389 |
+
def forward(self, x, x_mask, g=None, reverse=False):
|
390 |
+
x0, x1 = torch.split(x, [self.half_channels] * 2, 1)
|
391 |
+
h = self.pre(x0) * x_mask
|
392 |
+
h = self.enc(h, x_mask, g=g)
|
393 |
+
stats = self.post(h) * x_mask
|
394 |
+
if not self.mean_only:
|
395 |
+
m, logs = torch.split(stats, [self.half_channels] * 2, 1)
|
396 |
+
else:
|
397 |
+
m = stats
|
398 |
+
logs = torch.zeros_like(m)
|
399 |
+
|
400 |
+
if not reverse:
|
401 |
+
x1 = m + x1 * torch.exp(logs) * x_mask
|
402 |
+
x = torch.cat([x0, x1], 1)
|
403 |
+
logdet = torch.sum(logs, [1, 2])
|
404 |
+
return x, logdet
|
405 |
+
else:
|
406 |
+
x1 = (x1 - m) * torch.exp(-logs) * x_mask
|
407 |
+
x = torch.cat([x0, x1], 1)
|
408 |
+
return x
|
409 |
|
410 |
|
411 |
class ConvFlow(nn.Module):
|
412 |
+
def __init__(self,
|
413 |
+
in_channels,
|
414 |
+
filter_channels,
|
415 |
+
kernel_size,
|
416 |
+
n_layers,
|
417 |
+
num_bins=10,
|
418 |
+
tail_bound=5.0):
|
419 |
+
super().__init__()
|
420 |
+
self.in_channels = in_channels
|
421 |
+
self.filter_channels = filter_channels
|
422 |
+
self.kernel_size = kernel_size
|
423 |
+
self.n_layers = n_layers
|
424 |
+
self.num_bins = num_bins
|
425 |
+
self.tail_bound = tail_bound
|
426 |
+
self.half_channels = in_channels // 2
|
427 |
+
|
428 |
+
self.pre = nn.Conv1d(self.half_channels, filter_channels, 1)
|
429 |
+
self.convs = DDSConv(filter_channels,
|
430 |
+
kernel_size,
|
431 |
+
n_layers,
|
432 |
+
p_dropout=0.)
|
433 |
+
self.proj = nn.Conv1d(filter_channels,
|
434 |
+
self.half_channels * (num_bins * 3 - 1), 1)
|
435 |
+
self.proj.weight.data.zero_()
|
436 |
+
self.proj.bias.data.zero_()
|
437 |
+
|
438 |
+
def forward(self, x, x_mask, g=None, reverse=False):
|
439 |
+
x0, x1 = torch.split(x, [self.half_channels] * 2, 1)
|
440 |
+
h = self.pre(x0)
|
441 |
+
h = self.convs(h, x_mask, g=g)
|
442 |
+
h = self.proj(h) * x_mask
|
443 |
+
|
444 |
+
b, c, t = x0.shape
|
445 |
+
h = h.reshape(b, c, -1, t).permute(0, 1, 3,
|
446 |
+
2) # [b, cx?, t] -> [b, c, t, ?]
|
447 |
+
|
448 |
+
unnormalized_widths = h[..., :self.num_bins] / math.sqrt(
|
449 |
+
self.filter_channels)
|
450 |
+
unnormalized_heights = h[...,
|
451 |
+
self.num_bins:2 * self.num_bins] / math.sqrt(
|
452 |
+
self.filter_channels)
|
453 |
+
unnormalized_derivatives = h[..., 2 * self.num_bins:]
|
454 |
+
|
455 |
+
x1, logabsdet = piecewise_rational_quadratic_transform(
|
456 |
+
x1,
|
457 |
+
unnormalized_widths,
|
458 |
+
unnormalized_heights,
|
459 |
+
unnormalized_derivatives,
|
460 |
+
inverse=reverse,
|
461 |
+
tails='linear',
|
462 |
+
tail_bound=self.tail_bound)
|
463 |
+
|
464 |
+
x = torch.cat([x0, x1], 1) * x_mask
|
465 |
+
logdet = torch.sum(logabsdet * x_mask, [1, 2])
|
466 |
+
if not reverse:
|
467 |
+
return x, logdet
|
468 |
+
else:
|
469 |
+
return x
|
requirements.txt
CHANGED
@@ -1,5 +1,4 @@
|
|
1 |
Cython==0.29.21
|
2 |
-
romajitable
|
3 |
librosa==0.8.0
|
4 |
matplotlib==3.3.1
|
5 |
numpy==1.21.6
|
@@ -9,7 +8,6 @@ tensorboard==2.3.0
|
|
9 |
torch
|
10 |
torchvision
|
11 |
Unidecode==1.1.1
|
12 |
-
pyopenjtalk==0.2.0
|
13 |
jamo==0.4.1
|
14 |
pypinyin==0.44.0
|
15 |
jieba==0.42.1
|
@@ -17,4 +15,8 @@ cn2an==0.5.17
|
|
17 |
jieba==0.42.1
|
18 |
ipython==7.34.0
|
19 |
gradio==3.4.1
|
20 |
-
openai
|
|
|
|
|
|
|
|
|
|
1 |
Cython==0.29.21
|
|
|
2 |
librosa==0.8.0
|
3 |
matplotlib==3.3.1
|
4 |
numpy==1.21.6
|
|
|
8 |
torch
|
9 |
torchvision
|
10 |
Unidecode==1.1.1
|
|
|
11 |
jamo==0.4.1
|
12 |
pypinyin==0.44.0
|
13 |
jieba==0.42.1
|
|
|
15 |
jieba==0.42.1
|
16 |
ipython==7.34.0
|
17 |
gradio==3.4.1
|
18 |
+
openai
|
19 |
+
pydub
|
20 |
+
inflect
|
21 |
+
eng_to_ipa
|
22 |
+
onnxruntime
|
text/__init__.py
CHANGED
@@ -1,8 +1,14 @@
|
|
1 |
""" from https://github.com/keithito/tacotron """
|
2 |
from text import cleaners
|
|
|
3 |
|
4 |
|
5 |
-
|
|
|
|
|
|
|
|
|
|
|
6 |
'''Converts a string of text to a sequence of IDs corresponding to the symbols in the text.
|
7 |
Args:
|
8 |
text: string to convert to a sequence
|
@@ -10,8 +16,6 @@ def text_to_sequence(text, symbols, cleaner_names):
|
|
10 |
Returns:
|
11 |
List of integers corresponding to the symbols in the text
|
12 |
'''
|
13 |
-
_symbol_to_id = {s: i for i, s in enumerate(symbols)}
|
14 |
-
|
15 |
sequence = []
|
16 |
|
17 |
clean_text = _clean_text(text, cleaner_names)
|
@@ -23,6 +27,26 @@ def text_to_sequence(text, symbols, cleaner_names):
|
|
23 |
return sequence
|
24 |
|
25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
def _clean_text(text, cleaner_names):
|
27 |
for name in cleaner_names:
|
28 |
cleaner = getattr(cleaners, name)
|
|
|
1 |
""" from https://github.com/keithito/tacotron """
|
2 |
from text import cleaners
|
3 |
+
from text.symbols import symbols
|
4 |
|
5 |
|
6 |
+
# Mappings from symbol to numeric ID and vice versa:
|
7 |
+
_symbol_to_id = {s: i for i, s in enumerate(symbols)}
|
8 |
+
_id_to_symbol = {i: s for i, s in enumerate(symbols)}
|
9 |
+
|
10 |
+
|
11 |
+
def text_to_sequence(text, cleaner_names):
|
12 |
'''Converts a string of text to a sequence of IDs corresponding to the symbols in the text.
|
13 |
Args:
|
14 |
text: string to convert to a sequence
|
|
|
16 |
Returns:
|
17 |
List of integers corresponding to the symbols in the text
|
18 |
'''
|
|
|
|
|
19 |
sequence = []
|
20 |
|
21 |
clean_text = _clean_text(text, cleaner_names)
|
|
|
27 |
return sequence
|
28 |
|
29 |
|
30 |
+
def cleaned_text_to_sequence(cleaned_text):
|
31 |
+
'''Converts a string of text to a sequence of IDs corresponding to the symbols in the text.
|
32 |
+
Args:
|
33 |
+
text: string to convert to a sequence
|
34 |
+
Returns:
|
35 |
+
List of integers corresponding to the symbols in the text
|
36 |
+
'''
|
37 |
+
sequence = [_symbol_to_id[symbol] for symbol in cleaned_text if symbol in _symbol_to_id.keys()]
|
38 |
+
return sequence
|
39 |
+
|
40 |
+
|
41 |
+
def sequence_to_text(sequence):
|
42 |
+
'''Converts a sequence of IDs back to a string'''
|
43 |
+
result = ''
|
44 |
+
for symbol_id in sequence:
|
45 |
+
s = _id_to_symbol[symbol_id]
|
46 |
+
result += s
|
47 |
+
return result
|
48 |
+
|
49 |
+
|
50 |
def _clean_text(text, cleaner_names):
|
51 |
for name in cleaner_names:
|
52 |
cleaner = getattr(cleaners, name)
|
text/cleaners.py
CHANGED
@@ -1,33 +1,21 @@
|
|
1 |
import re
|
2 |
-
from text.
|
|
|
3 |
from text.mandarin import number_to_chinese, chinese_to_bopomofo, latin_to_bopomofo, chinese_to_romaji, chinese_to_lazy_ipa, chinese_to_ipa, chinese_to_ipa2
|
4 |
|
5 |
-
def
|
6 |
-
from text.japanese import japanese_to_romaji_with_accent
|
7 |
-
text = japanese_to_romaji_with_accent(text)
|
8 |
-
if re.match('[A-Za-z]', text[-1]):
|
9 |
-
text += '.'
|
10 |
return text
|
11 |
|
|
|
|
|
|
|
|
|
12 |
|
13 |
def japanese_cleaners2(text):
|
14 |
return japanese_cleaners(text).replace('ts', 'ʦ').replace('...', '…')
|
15 |
|
16 |
-
|
17 |
-
def korean_cleaners(text):
|
18 |
-
'''Pipeline for Korean text'''
|
19 |
-
from text.korean import latin_to_hangul, number_to_hangul, divide_hangul
|
20 |
-
text = latin_to_hangul(text)
|
21 |
-
text = number_to_hangul(text)
|
22 |
-
text = divide_hangul(text)
|
23 |
-
if re.match('[\u3131-\u3163]', text[-1]):
|
24 |
-
text += '.'
|
25 |
-
return text
|
26 |
-
|
27 |
-
|
28 |
def chinese_cleaners(text):
|
29 |
'''Pipeline for Chinese text'''
|
30 |
-
from text.mandarin import number_to_chinese, chinese_to_bopomofo, latin_to_bopomofo
|
31 |
text = number_to_chinese(text)
|
32 |
text = chinese_to_bopomofo(text)
|
33 |
text = latin_to_bopomofo(text)
|
@@ -35,10 +23,7 @@ def chinese_cleaners(text):
|
|
35 |
text += '。'
|
36 |
return text
|
37 |
|
38 |
-
|
39 |
def zh_ja_mixture_cleaners(text):
|
40 |
-
from text.mandarin import chinese_to_romaji
|
41 |
-
from text.japanese import japanese_to_romaji_with_accent
|
42 |
chinese_texts = re.findall(r'\[ZH\].*?\[ZH\]', text)
|
43 |
japanese_texts = re.findall(r'\[JA\].*?\[JA\]', text)
|
44 |
for chinese_text in chinese_texts:
|
@@ -53,53 +38,25 @@ def zh_ja_mixture_cleaners(text):
|
|
53 |
text += '.'
|
54 |
return text
|
55 |
|
56 |
-
|
57 |
-
def sanskrit_cleaners(text):
|
58 |
-
text = text.replace('॥', '।').replace('ॐ', 'ओम्')
|
59 |
-
if text[-1] != '।':
|
60 |
-
text += ' ।'
|
61 |
-
return text
|
62 |
-
|
63 |
-
|
64 |
-
def cjks_cleaners(text):
|
65 |
-
from text.mandarin import chinese_to_lazy_ipa
|
66 |
-
from text.japanese import japanese_to_ipa
|
67 |
-
from text.korean import korean_to_lazy_ipa
|
68 |
-
from text.sanskrit import devanagari_to_ipa
|
69 |
-
chinese_texts = re.findall(r'\[ZH\].*?\[ZH\]', text)
|
70 |
-
japanese_texts = re.findall(r'\[JA\].*?\[JA\]', text)
|
71 |
-
korean_texts = re.findall(r'\[KO\].*?\[KO\]', text)
|
72 |
-
sanskrit_texts = re.findall(r'\[SA\].*?\[SA\]', text)
|
73 |
-
for chinese_text in chinese_texts:
|
74 |
-
cleaned_text = chinese_to_lazy_ipa(chinese_text[4:-4])
|
75 |
-
text = text.replace(chinese_text, cleaned_text+' ', 1)
|
76 |
-
for japanese_text in japanese_texts:
|
77 |
-
cleaned_text = japanese_to_ipa(japanese_text[4:-4])
|
78 |
-
text = text.replace(japanese_text, cleaned_text+' ', 1)
|
79 |
-
for korean_text in korean_texts:
|
80 |
-
cleaned_text = korean_to_lazy_ipa(korean_text[4:-4])
|
81 |
-
text = text.replace(korean_text, cleaned_text+' ', 1)
|
82 |
-
for sanskrit_text in sanskrit_texts:
|
83 |
-
cleaned_text = devanagari_to_ipa(sanskrit_text[4:-4])
|
84 |
-
text = text.replace(sanskrit_text, cleaned_text+' ', 1)
|
85 |
-
text = text[:-1]
|
86 |
-
if re.match(r'[^\.,!\?\-…~]', text[-1]):
|
87 |
-
text += '.'
|
88 |
-
return text
|
89 |
-
|
90 |
def cjke_cleaners(text):
|
91 |
chinese_texts = re.findall(r'\[ZH\].*?\[ZH\]', text)
|
92 |
japanese_texts = re.findall(r'\[JA\].*?\[JA\]', text)
|
|
|
93 |
for chinese_text in chinese_texts:
|
94 |
cleaned_text = chinese_to_lazy_ipa(chinese_text[4:-4])
|
95 |
cleaned_text = cleaned_text.replace(
|
96 |
'ʧ', 'tʃ').replace('ʦ', 'ts').replace('ɥan', 'ɥæn')
|
97 |
text = text.replace(chinese_text, cleaned_text+' ', 1)
|
98 |
for japanese_text in japanese_texts:
|
99 |
-
cleaned_text =
|
100 |
cleaned_text = cleaned_text.replace('ʧ', 'tʃ').replace(
|
101 |
'ʦ', 'ts').replace('ɥan', 'ɥæn').replace('ʥ', 'dz')
|
102 |
text = text.replace(japanese_text, cleaned_text+' ', 1)
|
|
|
|
|
|
|
|
|
|
|
103 |
text = text[:-1]
|
104 |
if re.match(r'[^\.,!\?\-…~]', text[-1]):
|
105 |
text += '.'
|
|
|
1 |
import re
|
2 |
+
from text.english import english_to_lazy_ipa, english_to_ipa2, english_to_lazy_ipa2
|
3 |
+
from text.japanese import clean_japanese, japanese_to_romaji_with_accent, japanese_to_ipa, japanese_to_ipa2, japanese_to_ipa3
|
4 |
from text.mandarin import number_to_chinese, chinese_to_bopomofo, latin_to_bopomofo, chinese_to_romaji, chinese_to_lazy_ipa, chinese_to_ipa, chinese_to_ipa2
|
5 |
|
6 |
+
def none_cleaner(text):
|
|
|
|
|
|
|
|
|
7 |
return text
|
8 |
|
9 |
+
def japanese_cleaners(text):
|
10 |
+
text = clean_japanese(text)
|
11 |
+
text = re.sub(r'([A-Za-z])$', r'\1.', text)
|
12 |
+
return text
|
13 |
|
14 |
def japanese_cleaners2(text):
|
15 |
return japanese_cleaners(text).replace('ts', 'ʦ').replace('...', '…')
|
16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
def chinese_cleaners(text):
|
18 |
'''Pipeline for Chinese text'''
|
|
|
19 |
text = number_to_chinese(text)
|
20 |
text = chinese_to_bopomofo(text)
|
21 |
text = latin_to_bopomofo(text)
|
|
|
23 |
text += '。'
|
24 |
return text
|
25 |
|
|
|
26 |
def zh_ja_mixture_cleaners(text):
|
|
|
|
|
27 |
chinese_texts = re.findall(r'\[ZH\].*?\[ZH\]', text)
|
28 |
japanese_texts = re.findall(r'\[JA\].*?\[JA\]', text)
|
29 |
for chinese_text in chinese_texts:
|
|
|
38 |
text += '.'
|
39 |
return text
|
40 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
def cjke_cleaners(text):
|
42 |
chinese_texts = re.findall(r'\[ZH\].*?\[ZH\]', text)
|
43 |
japanese_texts = re.findall(r'\[JA\].*?\[JA\]', text)
|
44 |
+
english_texts = re.findall(r'\[EN\].*?\[EN\]', text)
|
45 |
for chinese_text in chinese_texts:
|
46 |
cleaned_text = chinese_to_lazy_ipa(chinese_text[4:-4])
|
47 |
cleaned_text = cleaned_text.replace(
|
48 |
'ʧ', 'tʃ').replace('ʦ', 'ts').replace('ɥan', 'ɥæn')
|
49 |
text = text.replace(chinese_text, cleaned_text+' ', 1)
|
50 |
for japanese_text in japanese_texts:
|
51 |
+
cleaned_text = clean_japanese(japanese_text[4:-4])
|
52 |
cleaned_text = cleaned_text.replace('ʧ', 'tʃ').replace(
|
53 |
'ʦ', 'ts').replace('ɥan', 'ɥæn').replace('ʥ', 'dz')
|
54 |
text = text.replace(japanese_text, cleaned_text+' ', 1)
|
55 |
+
for english_text in english_texts:
|
56 |
+
cleaned_text = english_to_ipa2(english_text[4:-4])
|
57 |
+
cleaned_text = cleaned_text.replace('ɑ', 'a').replace(
|
58 |
+
'ɔ', 'o').replace('ɛ', 'e').replace('ɪ', 'i').replace('ʊ', 'u')
|
59 |
+
text = text.replace(english_text, cleaned_text+' ', 1)
|
60 |
text = text[:-1]
|
61 |
if re.match(r'[^\.,!\?\-…~]', text[-1]):
|
62 |
text += '.'
|
text/english.py
ADDED
@@ -0,0 +1,188 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" from https://github.com/keithito/tacotron """
|
2 |
+
|
3 |
+
'''
|
4 |
+
Cleaners are transformations that run over the input text at both training and eval time.
|
5 |
+
|
6 |
+
Cleaners can be selected by passing a comma-delimited list of cleaner names as the "cleaners"
|
7 |
+
hyperparameter. Some cleaners are English-specific. You'll typically want to use:
|
8 |
+
1. "english_cleaners" for English text
|
9 |
+
2. "transliteration_cleaners" for non-English text that can be transliterated to ASCII using
|
10 |
+
the Unidecode library (https://pypi.python.org/pypi/Unidecode)
|
11 |
+
3. "basic_cleaners" if you do not want to transliterate (in this case, you should also update
|
12 |
+
the symbols in symbols.py to match your data).
|
13 |
+
'''
|
14 |
+
|
15 |
+
|
16 |
+
# Regular expression matching whitespace:
|
17 |
+
|
18 |
+
|
19 |
+
import re
|
20 |
+
import inflect
|
21 |
+
from unidecode import unidecode
|
22 |
+
import eng_to_ipa as ipa
|
23 |
+
_inflect = inflect.engine()
|
24 |
+
_comma_number_re = re.compile(r'([0-9][0-9\,]+[0-9])')
|
25 |
+
_decimal_number_re = re.compile(r'([0-9]+\.[0-9]+)')
|
26 |
+
_pounds_re = re.compile(r'£([0-9\,]*[0-9]+)')
|
27 |
+
_dollars_re = re.compile(r'\$([0-9\.\,]*[0-9]+)')
|
28 |
+
_ordinal_re = re.compile(r'[0-9]+(st|nd|rd|th)')
|
29 |
+
_number_re = re.compile(r'[0-9]+')
|
30 |
+
|
31 |
+
# List of (regular expression, replacement) pairs for abbreviations:
|
32 |
+
_abbreviations = [(re.compile('\\b%s\\.' % x[0], re.IGNORECASE), x[1]) for x in [
|
33 |
+
('mrs', 'misess'),
|
34 |
+
('mr', 'mister'),
|
35 |
+
('dr', 'doctor'),
|
36 |
+
('st', 'saint'),
|
37 |
+
('co', 'company'),
|
38 |
+
('jr', 'junior'),
|
39 |
+
('maj', 'major'),
|
40 |
+
('gen', 'general'),
|
41 |
+
('drs', 'doctors'),
|
42 |
+
('rev', 'reverend'),
|
43 |
+
('lt', 'lieutenant'),
|
44 |
+
('hon', 'honorable'),
|
45 |
+
('sgt', 'sergeant'),
|
46 |
+
('capt', 'captain'),
|
47 |
+
('esq', 'esquire'),
|
48 |
+
('ltd', 'limited'),
|
49 |
+
('col', 'colonel'),
|
50 |
+
('ft', 'fort'),
|
51 |
+
]]
|
52 |
+
|
53 |
+
|
54 |
+
# List of (ipa, lazy ipa) pairs:
|
55 |
+
_lazy_ipa = [(re.compile('%s' % x[0]), x[1]) for x in [
|
56 |
+
('r', 'ɹ'),
|
57 |
+
('æ', 'e'),
|
58 |
+
('ɑ', 'a'),
|
59 |
+
('ɔ', 'o'),
|
60 |
+
('ð', 'z'),
|
61 |
+
('θ', 's'),
|
62 |
+
('ɛ', 'e'),
|
63 |
+
('ɪ', 'i'),
|
64 |
+
('ʊ', 'u'),
|
65 |
+
('ʒ', 'ʥ'),
|
66 |
+
('ʤ', 'ʥ'),
|
67 |
+
('ˈ', '↓'),
|
68 |
+
]]
|
69 |
+
|
70 |
+
# List of (ipa, lazy ipa2) pairs:
|
71 |
+
_lazy_ipa2 = [(re.compile('%s' % x[0]), x[1]) for x in [
|
72 |
+
('r', 'ɹ'),
|
73 |
+
('ð', 'z'),
|
74 |
+
('θ', 's'),
|
75 |
+
('ʒ', 'ʑ'),
|
76 |
+
('ʤ', 'dʑ'),
|
77 |
+
('ˈ', '↓'),
|
78 |
+
]]
|
79 |
+
|
80 |
+
# List of (ipa, ipa2) pairs
|
81 |
+
_ipa_to_ipa2 = [(re.compile('%s' % x[0]), x[1]) for x in [
|
82 |
+
('r', 'ɹ'),
|
83 |
+
('ʤ', 'dʒ'),
|
84 |
+
('ʧ', 'tʃ')
|
85 |
+
]]
|
86 |
+
|
87 |
+
|
88 |
+
def expand_abbreviations(text):
|
89 |
+
for regex, replacement in _abbreviations:
|
90 |
+
text = re.sub(regex, replacement, text)
|
91 |
+
return text
|
92 |
+
|
93 |
+
|
94 |
+
def collapse_whitespace(text):
|
95 |
+
return re.sub(r'\s+', ' ', text)
|
96 |
+
|
97 |
+
|
98 |
+
def _remove_commas(m):
|
99 |
+
return m.group(1).replace(',', '')
|
100 |
+
|
101 |
+
|
102 |
+
def _expand_decimal_point(m):
|
103 |
+
return m.group(1).replace('.', ' point ')
|
104 |
+
|
105 |
+
|
106 |
+
def _expand_dollars(m):
|
107 |
+
match = m.group(1)
|
108 |
+
parts = match.split('.')
|
109 |
+
if len(parts) > 2:
|
110 |
+
return match + ' dollars' # Unexpected format
|
111 |
+
dollars = int(parts[0]) if parts[0] else 0
|
112 |
+
cents = int(parts[1]) if len(parts) > 1 and parts[1] else 0
|
113 |
+
if dollars and cents:
|
114 |
+
dollar_unit = 'dollar' if dollars == 1 else 'dollars'
|
115 |
+
cent_unit = 'cent' if cents == 1 else 'cents'
|
116 |
+
return '%s %s, %s %s' % (dollars, dollar_unit, cents, cent_unit)
|
117 |
+
elif dollars:
|
118 |
+
dollar_unit = 'dollar' if dollars == 1 else 'dollars'
|
119 |
+
return '%s %s' % (dollars, dollar_unit)
|
120 |
+
elif cents:
|
121 |
+
cent_unit = 'cent' if cents == 1 else 'cents'
|
122 |
+
return '%s %s' % (cents, cent_unit)
|
123 |
+
else:
|
124 |
+
return 'zero dollars'
|
125 |
+
|
126 |
+
|
127 |
+
def _expand_ordinal(m):
|
128 |
+
return _inflect.number_to_words(m.group(0))
|
129 |
+
|
130 |
+
|
131 |
+
def _expand_number(m):
|
132 |
+
num = int(m.group(0))
|
133 |
+
if num > 1000 and num < 3000:
|
134 |
+
if num == 2000:
|
135 |
+
return 'two thousand'
|
136 |
+
elif num > 2000 and num < 2010:
|
137 |
+
return 'two thousand ' + _inflect.number_to_words(num % 100)
|
138 |
+
elif num % 100 == 0:
|
139 |
+
return _inflect.number_to_words(num // 100) + ' hundred'
|
140 |
+
else:
|
141 |
+
return _inflect.number_to_words(num, andword='', zero='oh', group=2).replace(', ', ' ')
|
142 |
+
else:
|
143 |
+
return _inflect.number_to_words(num, andword='')
|
144 |
+
|
145 |
+
|
146 |
+
def normalize_numbers(text):
|
147 |
+
text = re.sub(_comma_number_re, _remove_commas, text)
|
148 |
+
text = re.sub(_pounds_re, r'\1 pounds', text)
|
149 |
+
text = re.sub(_dollars_re, _expand_dollars, text)
|
150 |
+
text = re.sub(_decimal_number_re, _expand_decimal_point, text)
|
151 |
+
text = re.sub(_ordinal_re, _expand_ordinal, text)
|
152 |
+
text = re.sub(_number_re, _expand_number, text)
|
153 |
+
return text
|
154 |
+
|
155 |
+
|
156 |
+
def mark_dark_l(text):
|
157 |
+
return re.sub(r'l([^aeiouæɑɔəɛɪʊ ]*(?: |$))', lambda x: 'ɫ'+x.group(1), text)
|
158 |
+
|
159 |
+
|
160 |
+
def english_to_ipa(text):
|
161 |
+
text = unidecode(text).lower()
|
162 |
+
text = expand_abbreviations(text)
|
163 |
+
text = normalize_numbers(text)
|
164 |
+
phonemes = ipa.convert(text)
|
165 |
+
phonemes = collapse_whitespace(phonemes)
|
166 |
+
return phonemes
|
167 |
+
|
168 |
+
|
169 |
+
def english_to_lazy_ipa(text):
|
170 |
+
text = english_to_ipa(text)
|
171 |
+
for regex, replacement in _lazy_ipa:
|
172 |
+
text = re.sub(regex, replacement, text)
|
173 |
+
return text
|
174 |
+
|
175 |
+
|
176 |
+
def english_to_ipa2(text):
|
177 |
+
text = english_to_ipa(text)
|
178 |
+
text = mark_dark_l(text)
|
179 |
+
for regex, replacement in _ipa_to_ipa2:
|
180 |
+
text = re.sub(regex, replacement, text)
|
181 |
+
return text.replace('...', '…')
|
182 |
+
|
183 |
+
|
184 |
+
def english_to_lazy_ipa2(text):
|
185 |
+
text = english_to_ipa(text)
|
186 |
+
for regex, replacement in _lazy_ipa2:
|
187 |
+
text = re.sub(regex, replacement, text)
|
188 |
+
return text
|
text/japanese.py
CHANGED
@@ -1,6 +1,18 @@
|
|
1 |
import re
|
2 |
from unidecode import unidecode
|
3 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
|
6 |
# Regular expression matching Japanese without punctuation marks:
|
|
|
1 |
import re
|
2 |
from unidecode import unidecode
|
3 |
+
from unidecode import unidecode
|
4 |
+
import ctypes
|
5 |
+
|
6 |
+
dll = ctypes.cdll.LoadLibrary('cleaners/JapaneseCleaner.dll')
|
7 |
+
dll.CreateOjt.restype = ctypes.c_uint64
|
8 |
+
dll.PluginMain.restype = ctypes.c_uint64
|
9 |
+
floder = ctypes.create_unicode_buffer("cleaners")
|
10 |
+
dll.CreateOjt(floder)
|
11 |
+
|
12 |
+
def clean_japanese(text):
|
13 |
+
input_wchar_pointer = ctypes.create_unicode_buffer(text)
|
14 |
+
result = ctypes.wstring_at(dll.PluginMain(input_wchar_pointer))
|
15 |
+
return result
|
16 |
|
17 |
|
18 |
# Regular expression matching Japanese without punctuation marks:
|
text/symbols.py
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
'''
|
2 |
+
Defines the set of symbols used in text input to the model.
|
3 |
+
'''
|
4 |
+
_pad = '_'
|
5 |
+
_punctuation = ',.!?-~…'
|
6 |
+
_letters = 'AEINOQUabdefghijklmnoprstuvwyzʃʧʦɯɹəɥ⁼ʰ`→↓↑ '
|
7 |
+
'''
|
8 |
+
# japanese_cleaners2
|
9 |
+
_pad = '_'
|
10 |
+
_punctuation = ',.!?-~…'
|
11 |
+
_letters = 'AEINOQUabdefghijkmnoprstuvwyzʃʧʦ↓↑ '
|
12 |
+
'''
|
13 |
+
|
14 |
+
'''# korean_cleaners
|
15 |
+
_pad = '_'
|
16 |
+
_punctuation = ',.!?…~'
|
17 |
+
_letters = 'ㄱㄴㄷㄹㅁㅂㅅㅇㅈㅊㅋㅌㅍㅎㄲㄸㅃㅆㅉㅏㅓㅗㅜㅡㅣㅐㅔ '
|
18 |
+
'''
|
19 |
+
|
20 |
+
'''# chinese_cleaners
|
21 |
+
_pad = '_'
|
22 |
+
_punctuation = ',。!?—…'
|
23 |
+
_letters = 'ㄅㄆㄇㄈㄉㄊㄋㄌㄍㄎㄏㄐㄑㄒㄓㄔㄕㄖㄗㄘㄙㄚㄛㄜㄝㄞㄟㄠㄡㄢㄣㄤㄥㄦㄧㄨㄩˉˊˇˋ˙ '
|
24 |
+
'''
|
25 |
+
|
26 |
+
|
27 |
+
'''# sanskrit_cleaners
|
28 |
+
_pad = '_'
|
29 |
+
_punctuation = '।'
|
30 |
+
_letters = 'ँंःअआइईउऊऋएऐओऔकखगघङचछजझञटठडढणतथदधनपफबभमयरलळवशषसहऽािीुूृॄेैोौ्ॠॢ '
|
31 |
+
'''
|
32 |
+
|
33 |
+
'''# cjks_cleaners
|
34 |
+
_pad = '_'
|
35 |
+
_punctuation = ',.!?-~…'
|
36 |
+
_letters = 'NQabdefghijklmnopstuvwxyzʃʧʥʦɯɹəɥçɸɾβŋɦː⁼ʰ`^#*=→↓↑ '
|
37 |
+
'''
|
38 |
+
|
39 |
+
'''# thai_cleaners
|
40 |
+
_pad = '_'
|
41 |
+
_punctuation = '.!? '
|
42 |
+
_letters = 'กขฃคฆงจฉชซฌญฎฏฐฑฒณดตถทธนบปผฝพฟภมยรฤลวศษสหฬอฮฯะัาำิีึืุูเแโใไๅๆ็่้๊๋์'
|
43 |
+
'''
|
44 |
+
|
45 |
+
'''# cjke_cleaners2
|
46 |
+
_pad = '_'
|
47 |
+
_punctuation = ',.!?-~…'
|
48 |
+
_letters = 'NQabdefghijklmnopstuvwxyzɑæʃʑçɯɪɔɛɹðəɫɥɸʊɾʒθβŋɦ⁼ʰ`^#*=ˈˌ→↓↑ '
|
49 |
+
'''
|
50 |
+
|
51 |
+
'''# shanghainese_cleaners
|
52 |
+
_pad = '_'
|
53 |
+
_punctuation = ',.!?…'
|
54 |
+
_letters = 'abdfghiklmnopstuvyzøŋȵɑɔɕəɤɦɪɿʑʔʰ̩̃ᴀᴇ15678 '
|
55 |
+
'''
|
56 |
+
|
57 |
+
'''# chinese_dialect_cleaners
|
58 |
+
_pad = '_'
|
59 |
+
_punctuation = ',.!?~…─'
|
60 |
+
_letters = '#Nabdefghijklmnoprstuvwxyzæçøŋœȵɐɑɒɓɔɕɗɘəɚɛɜɣɤɦɪɭɯɵɷɸɻɾɿʂʅʊʋʌʏʑʔʦʮʰʷˀː˥˦˧˨˩̥̩̃̚αᴀᴇ↑↓∅ⱼ '
|
61 |
+
'''
|
62 |
+
|
63 |
+
# Export all symbols:
|
64 |
+
symbols = [_pad] + list(_punctuation) + list(_letters)
|
65 |
+
|
66 |
+
# Special symbol ids
|
67 |
+
SPACE_ID = symbols.index(" ")
|
train.py
ADDED
@@ -0,0 +1,328 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from torch.nn import functional as F
|
5 |
+
from torch.utils.data import DataLoader
|
6 |
+
from torch.utils.tensorboard import SummaryWriter
|
7 |
+
import torch.multiprocessing as mp
|
8 |
+
import torch.distributed as dist
|
9 |
+
from torch.nn.parallel import DistributedDataParallel as DDP
|
10 |
+
from torch.cuda.amp import autocast, GradScaler
|
11 |
+
|
12 |
+
import commons
|
13 |
+
import utils
|
14 |
+
from data_utils import (TextAudioSpeakerLoader, TextAudioSpeakerCollate,
|
15 |
+
DistributedBucketSampler)
|
16 |
+
from models import (
|
17 |
+
SynthesizerTrn,
|
18 |
+
MultiPeriodDiscriminator,
|
19 |
+
)
|
20 |
+
from losses import (generator_loss, discriminator_loss, feature_loss, kl_loss)
|
21 |
+
from mel_processing import mel_spectrogram_torch, spec_to_mel_torch
|
22 |
+
|
23 |
+
torch.backends.cudnn.benchmark = True
|
24 |
+
global_step = 0
|
25 |
+
|
26 |
+
|
27 |
+
def main():
|
28 |
+
"""Assume Single Node Multi GPUs Training Only"""
|
29 |
+
assert torch.cuda.is_available(), "CPU training is not allowed."
|
30 |
+
|
31 |
+
n_gpus = torch.cuda.device_count()
|
32 |
+
hps = utils.get_hparams()
|
33 |
+
mp.spawn(run, nprocs=n_gpus, args=(
|
34 |
+
n_gpus,
|
35 |
+
hps,
|
36 |
+
))
|
37 |
+
|
38 |
+
|
39 |
+
def run(rank, n_gpus, hps):
|
40 |
+
global global_step
|
41 |
+
if rank == 0:
|
42 |
+
logger = utils.get_logger(hps.model_dir)
|
43 |
+
logger.info(hps)
|
44 |
+
utils.check_git_hash(hps.model_dir)
|
45 |
+
writer = SummaryWriter(log_dir=hps.model_dir)
|
46 |
+
writer_eval = SummaryWriter(
|
47 |
+
log_dir=os.path.join(hps.model_dir, "eval"))
|
48 |
+
|
49 |
+
dist.init_process_group(backend='nccl',
|
50 |
+
init_method='env://',
|
51 |
+
world_size=n_gpus,
|
52 |
+
rank=rank)
|
53 |
+
torch.manual_seed(hps.train.seed)
|
54 |
+
torch.cuda.set_device(rank)
|
55 |
+
train_dataset = TextAudioSpeakerLoader(hps.data.training_files, hps.data)
|
56 |
+
train_sampler = DistributedBucketSampler(
|
57 |
+
train_dataset,
|
58 |
+
hps.train.batch_size, [32, 300, 400, 500, 600, 700, 800, 900, 1000],
|
59 |
+
num_replicas=n_gpus,
|
60 |
+
rank=rank,
|
61 |
+
shuffle=True)
|
62 |
+
collate_fn = TextAudioSpeakerCollate()
|
63 |
+
train_loader = DataLoader(train_dataset,
|
64 |
+
num_workers=8,
|
65 |
+
shuffle=False,
|
66 |
+
pin_memory=True,
|
67 |
+
collate_fn=collate_fn,
|
68 |
+
batch_sampler=train_sampler)
|
69 |
+
if rank == 0:
|
70 |
+
eval_dataset = TextAudioSpeakerLoader(hps.data.validation_files,
|
71 |
+
hps.data)
|
72 |
+
eval_loader = DataLoader(eval_dataset,
|
73 |
+
num_workers=8,
|
74 |
+
shuffle=False,
|
75 |
+
batch_size=hps.train.batch_size,
|
76 |
+
pin_memory=True,
|
77 |
+
drop_last=False,
|
78 |
+
collate_fn=collate_fn)
|
79 |
+
|
80 |
+
net_g = SynthesizerTrn(hps.data.num_phones,
|
81 |
+
hps.data.filter_length // 2 + 1,
|
82 |
+
hps.train.segment_size // hps.data.hop_length,
|
83 |
+
n_speakers=hps.data.n_speakers,
|
84 |
+
**hps.model).cuda(rank)
|
85 |
+
net_d = MultiPeriodDiscriminator(hps.model.use_spectral_norm).cuda(rank)
|
86 |
+
optim_g = torch.optim.AdamW(net_g.parameters(),
|
87 |
+
hps.train.learning_rate,
|
88 |
+
betas=hps.train.betas,
|
89 |
+
eps=hps.train.eps)
|
90 |
+
optim_d = torch.optim.AdamW(net_d.parameters(),
|
91 |
+
hps.train.learning_rate,
|
92 |
+
betas=hps.train.betas,
|
93 |
+
eps=hps.train.eps)
|
94 |
+
net_g = DDP(net_g, device_ids=[rank])
|
95 |
+
net_d = DDP(net_d, device_ids=[rank])
|
96 |
+
|
97 |
+
try:
|
98 |
+
_, _, _, epoch_str = utils.load_checkpoint(
|
99 |
+
utils.latest_checkpoint_path(hps.model_dir, "G_*.pth"), net_g,
|
100 |
+
optim_g)
|
101 |
+
_, _, _, epoch_str = utils.load_checkpoint(
|
102 |
+
utils.latest_checkpoint_path(hps.model_dir, "D_*.pth"), net_d,
|
103 |
+
optim_d)
|
104 |
+
global_step = (epoch_str - 1) * len(train_loader)
|
105 |
+
except Exception as e:
|
106 |
+
epoch_str = 1
|
107 |
+
global_step = 0
|
108 |
+
|
109 |
+
scheduler_g = torch.optim.lr_scheduler.ExponentialLR(
|
110 |
+
optim_g, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2)
|
111 |
+
scheduler_d = torch.optim.lr_scheduler.ExponentialLR(
|
112 |
+
optim_d, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2)
|
113 |
+
|
114 |
+
scaler = GradScaler(enabled=hps.train.fp16_run)
|
115 |
+
|
116 |
+
for epoch in range(epoch_str, hps.train.epochs + 1):
|
117 |
+
if rank == 0:
|
118 |
+
train_and_evaluate(rank, epoch, hps, [net_g, net_d],
|
119 |
+
[optim_g, optim_d], [scheduler_g, scheduler_d],
|
120 |
+
scaler, [train_loader, eval_loader], logger,
|
121 |
+
[writer, writer_eval])
|
122 |
+
else:
|
123 |
+
train_and_evaluate(rank, epoch, hps, [net_g, net_d],
|
124 |
+
[optim_g, optim_d], [scheduler_g, scheduler_d],
|
125 |
+
scaler, [train_loader, None], None, None)
|
126 |
+
scheduler_g.step()
|
127 |
+
scheduler_d.step()
|
128 |
+
|
129 |
+
|
130 |
+
def train_and_evaluate(rank, epoch, hps, nets, optims, schedulers, scaler,
|
131 |
+
loaders, logger, writers):
|
132 |
+
net_g, net_d = nets
|
133 |
+
optim_g, optim_d = optims
|
134 |
+
scheduler_g, scheduler_d = schedulers
|
135 |
+
train_loader, eval_loader = loaders
|
136 |
+
if writers is not None:
|
137 |
+
writer, writer_eval = writers
|
138 |
+
|
139 |
+
train_loader.batch_sampler.set_epoch(epoch)
|
140 |
+
global global_step
|
141 |
+
|
142 |
+
net_g.train()
|
143 |
+
net_d.train()
|
144 |
+
for batch_idx, (x, x_lengths, spec, spec_lengths, y, y_lengths,
|
145 |
+
speakers) in enumerate(train_loader):
|
146 |
+
x, x_lengths = x.cuda(rank, non_blocking=True), x_lengths.cuda(
|
147 |
+
rank, non_blocking=True)
|
148 |
+
spec, spec_lengths = spec.cuda(
|
149 |
+
rank, non_blocking=True), spec_lengths.cuda(rank,
|
150 |
+
non_blocking=True)
|
151 |
+
y, y_lengths = y.cuda(rank, non_blocking=True), y_lengths.cuda(
|
152 |
+
rank, non_blocking=True)
|
153 |
+
speakers = speakers.cuda(rank, non_blocking=True)
|
154 |
+
|
155 |
+
with autocast(enabled=hps.train.fp16_run):
|
156 |
+
y_hat, l_length, attn, ids_slice, x_mask, z_mask, (
|
157 |
+
z, z_p, m_p, logs_p, m_q,
|
158 |
+
logs_q) = net_g(x, x_lengths, spec, spec_lengths, speakers)
|
159 |
+
|
160 |
+
mel = spec_to_mel_torch(spec, hps.data.filter_length,
|
161 |
+
hps.data.n_mel_channels,
|
162 |
+
hps.data.sampling_rate, hps.data.mel_fmin,
|
163 |
+
hps.data.mel_fmax)
|
164 |
+
y_mel = commons.slice_segments(
|
165 |
+
mel, ids_slice, hps.train.segment_size // hps.data.hop_length)
|
166 |
+
y_hat_mel = mel_spectrogram_torch(
|
167 |
+
y_hat.squeeze(1), hps.data.filter_length,
|
168 |
+
hps.data.n_mel_channels, hps.data.sampling_rate,
|
169 |
+
hps.data.hop_length, hps.data.win_length, hps.data.mel_fmin,
|
170 |
+
hps.data.mel_fmax)
|
171 |
+
|
172 |
+
y = commons.slice_segments(y, ids_slice * hps.data.hop_length,
|
173 |
+
hps.train.segment_size) # slice
|
174 |
+
|
175 |
+
# Discriminator
|
176 |
+
y_d_hat_r, y_d_hat_g, _, _ = net_d(y, y_hat.detach())
|
177 |
+
with autocast(enabled=False):
|
178 |
+
loss_disc, losses_disc_r, losses_disc_g = discriminator_loss(
|
179 |
+
y_d_hat_r, y_d_hat_g)
|
180 |
+
loss_disc_all = loss_disc
|
181 |
+
optim_d.zero_grad()
|
182 |
+
scaler.scale(loss_disc_all).backward()
|
183 |
+
scaler.unscale_(optim_d)
|
184 |
+
grad_norm_d = commons.clip_grad_value_(net_d.parameters(), None)
|
185 |
+
scaler.step(optim_d)
|
186 |
+
|
187 |
+
with autocast(enabled=hps.train.fp16_run):
|
188 |
+
# Generator
|
189 |
+
y_d_hat_r, y_d_hat_g, fmap_r, fmap_g = net_d(y, y_hat)
|
190 |
+
with autocast(enabled=False):
|
191 |
+
loss_dur = torch.sum(l_length.float())
|
192 |
+
loss_mel = F.l1_loss(y_mel, y_hat_mel) * hps.train.c_mel
|
193 |
+
loss_kl = kl_loss(z_p, logs_q, m_p, logs_p,
|
194 |
+
z_mask) * hps.train.c_kl
|
195 |
+
|
196 |
+
loss_fm = feature_loss(fmap_r, fmap_g)
|
197 |
+
loss_gen, losses_gen = generator_loss(y_d_hat_g)
|
198 |
+
loss_gen_all = loss_gen + loss_fm + loss_mel + loss_dur + loss_kl
|
199 |
+
optim_g.zero_grad()
|
200 |
+
scaler.scale(loss_gen_all).backward()
|
201 |
+
scaler.unscale_(optim_g)
|
202 |
+
grad_norm_g = commons.clip_grad_value_(net_g.parameters(), None)
|
203 |
+
scaler.step(optim_g)
|
204 |
+
scaler.update()
|
205 |
+
|
206 |
+
if rank == 0:
|
207 |
+
if global_step % hps.train.log_interval == 0:
|
208 |
+
lr = optim_g.param_groups[0]['lr']
|
209 |
+
losses = [
|
210 |
+
loss_disc, loss_gen, loss_fm, loss_mel, loss_dur, loss_kl
|
211 |
+
]
|
212 |
+
logger.info('Train Epoch: {} [{:.0f}%]'.format(
|
213 |
+
epoch, 100. * batch_idx / len(train_loader)))
|
214 |
+
logger.info([x.item() for x in losses] + [global_step, lr])
|
215 |
+
|
216 |
+
scalar_dict = {
|
217 |
+
"loss/g/total": loss_gen_all,
|
218 |
+
"loss/d/total": loss_disc_all,
|
219 |
+
"learning_rate": lr,
|
220 |
+
"grad_norm_d": grad_norm_d,
|
221 |
+
"grad_norm_g": grad_norm_g
|
222 |
+
}
|
223 |
+
scalar_dict.update({
|
224 |
+
"loss/g/fm": loss_fm,
|
225 |
+
"loss/g/mel": loss_mel,
|
226 |
+
"loss/g/dur": loss_dur,
|
227 |
+
"loss/g/kl": loss_kl
|
228 |
+
})
|
229 |
+
|
230 |
+
scalar_dict.update({
|
231 |
+
"loss/g/{}".format(i): v
|
232 |
+
for i, v in enumerate(losses_gen)
|
233 |
+
})
|
234 |
+
scalar_dict.update({
|
235 |
+
"loss/d_r/{}".format(i): v
|
236 |
+
for i, v in enumerate(losses_disc_r)
|
237 |
+
})
|
238 |
+
scalar_dict.update({
|
239 |
+
"loss/d_g/{}".format(i): v
|
240 |
+
for i, v in enumerate(losses_disc_g)
|
241 |
+
})
|
242 |
+
image_dict = {
|
243 |
+
"slice/mel_org":
|
244 |
+
utils.plot_spectrogram_to_numpy(
|
245 |
+
y_mel[0].data.cpu().numpy()),
|
246 |
+
"slice/mel_gen":
|
247 |
+
utils.plot_spectrogram_to_numpy(
|
248 |
+
y_hat_mel[0].data.cpu().numpy()),
|
249 |
+
"all/mel":
|
250 |
+
utils.plot_spectrogram_to_numpy(mel[0].data.cpu().numpy()),
|
251 |
+
"all/attn":
|
252 |
+
utils.plot_alignment_to_numpy(attn[0,
|
253 |
+
0].data.cpu().numpy())
|
254 |
+
}
|
255 |
+
utils.summarize(writer=writer,
|
256 |
+
global_step=global_step,
|
257 |
+
images=image_dict,
|
258 |
+
scalars=scalar_dict)
|
259 |
+
|
260 |
+
if global_step % hps.train.eval_interval == 0:
|
261 |
+
evaluate(hps, net_g, eval_loader, writer_eval)
|
262 |
+
utils.save_checkpoint(
|
263 |
+
net_g, optim_g, hps.train.learning_rate, epoch,
|
264 |
+
os.path.join(hps.model_dir,
|
265 |
+
"G_{}.pth".format(global_step)))
|
266 |
+
utils.save_checkpoint(
|
267 |
+
net_d, optim_d, hps.train.learning_rate, epoch,
|
268 |
+
os.path.join(hps.model_dir,
|
269 |
+
"D_{}.pth".format(global_step)))
|
270 |
+
global_step += 1
|
271 |
+
|
272 |
+
if rank == 0:
|
273 |
+
logger.info('====> Epoch: {}'.format(epoch))
|
274 |
+
|
275 |
+
|
276 |
+
def evaluate(hps, generator, eval_loader, writer_eval):
|
277 |
+
generator.eval()
|
278 |
+
with torch.no_grad():
|
279 |
+
for batch_idx, (x, x_lengths, spec, spec_lengths, y, y_lengths,
|
280 |
+
speakers) in enumerate(eval_loader):
|
281 |
+
x, x_lengths = x.cuda(0), x_lengths.cuda(0)
|
282 |
+
spec, spec_lengths = spec.cuda(0), spec_lengths.cuda(0)
|
283 |
+
y, y_lengths = y.cuda(0), y_lengths.cuda(0)
|
284 |
+
speakers = speakers.cuda(0)
|
285 |
+
|
286 |
+
# remove else
|
287 |
+
x = x[:1]
|
288 |
+
x_lengths = x_lengths[:1]
|
289 |
+
spec = spec[:1]
|
290 |
+
spec_lengths = spec_lengths[:1]
|
291 |
+
y = y[:1]
|
292 |
+
y_lengths = y_lengths[:1]
|
293 |
+
speakers = speakers[:1]
|
294 |
+
break
|
295 |
+
y_hat, attn, mask, *_ = generator.module.infer(x,
|
296 |
+
x_lengths,
|
297 |
+
speakers,
|
298 |
+
max_len=1000)
|
299 |
+
y_hat_lengths = mask.sum([1, 2]).long() * hps.data.hop_length
|
300 |
+
|
301 |
+
mel = spec_to_mel_torch(spec, hps.data.filter_length,
|
302 |
+
hps.data.n_mel_channels,
|
303 |
+
hps.data.sampling_rate, hps.data.mel_fmin,
|
304 |
+
hps.data.mel_fmax)
|
305 |
+
y_hat_mel = mel_spectrogram_torch(
|
306 |
+
y_hat.squeeze(1).float(), hps.data.filter_length,
|
307 |
+
hps.data.n_mel_channels, hps.data.sampling_rate,
|
308 |
+
hps.data.hop_length, hps.data.win_length, hps.data.mel_fmin,
|
309 |
+
hps.data.mel_fmax)
|
310 |
+
image_dict = {
|
311 |
+
"gen/mel": utils.plot_spectrogram_to_numpy(y_hat_mel[0].cpu().numpy())
|
312 |
+
}
|
313 |
+
audio_dict = {"gen/audio": y_hat[0, :, :y_hat_lengths[0]]}
|
314 |
+
if global_step == 0:
|
315 |
+
image_dict.update(
|
316 |
+
{"gt/mel": utils.plot_spectrogram_to_numpy(mel[0].cpu().numpy())})
|
317 |
+
audio_dict.update({"gt/audio": y[0, :, :y_lengths[0]]})
|
318 |
+
|
319 |
+
utils.summarize(writer=writer_eval,
|
320 |
+
global_step=global_step,
|
321 |
+
images=image_dict,
|
322 |
+
audios=audio_dict,
|
323 |
+
audio_sampling_rate=hps.data.sampling_rate)
|
324 |
+
generator.train()
|
325 |
+
|
326 |
+
|
327 |
+
if __name__ == "__main__":
|
328 |
+
main()
|
transforms.py
CHANGED
@@ -1,67 +1,60 @@
|
|
|
|
1 |
import torch
|
2 |
from torch.nn import functional as F
|
3 |
|
4 |
-
import numpy as np
|
5 |
-
|
6 |
-
|
7 |
DEFAULT_MIN_BIN_WIDTH = 1e-3
|
8 |
DEFAULT_MIN_BIN_HEIGHT = 1e-3
|
9 |
DEFAULT_MIN_DERIVATIVE = 1e-3
|
10 |
|
11 |
|
12 |
-
def piecewise_rational_quadratic_transform(
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
|
|
22 |
|
23 |
if tails is None:
|
24 |
spline_fn = rational_quadratic_spline
|
25 |
spline_kwargs = {}
|
26 |
else:
|
27 |
spline_fn = unconstrained_rational_quadratic_spline
|
28 |
-
spline_kwargs = {
|
29 |
-
'tails': tails,
|
30 |
-
'tail_bound': tail_bound
|
31 |
-
}
|
32 |
|
33 |
outputs, logabsdet = spline_fn(
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
)
|
44 |
return outputs, logabsdet
|
45 |
|
46 |
|
47 |
def searchsorted(bin_locations, inputs, eps=1e-6):
|
48 |
-
bin_locations[..., -1] += eps
|
49 |
-
return torch.sum(
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
|
64 |
-
min_derivative=DEFAULT_MIN_DERIVATIVE):
|
65 |
inside_interval_mask = (inputs >= -tail_bound) & (inputs <= tail_bound)
|
66 |
outside_interval_mask = ~inside_interval_mask
|
67 |
|
@@ -72,33 +65,41 @@ def unconstrained_rational_quadratic_spline(inputs,
|
|
72 |
unnormalized_derivatives = F.pad(unnormalized_derivatives, pad=(1, 1))
|
73 |
constant = np.log(np.exp(1 - min_derivative) - 1)
|
74 |
unnormalized_derivatives[..., 0] = constant
|
75 |
-
unnormalized_derivatives[..., -1] = constant
|
76 |
|
77 |
outputs[outside_interval_mask] = inputs[outside_interval_mask]
|
78 |
logabsdet[outside_interval_mask] = 0
|
79 |
else:
|
80 |
raise RuntimeError('{} tails are not implemented.'.format(tails))
|
81 |
|
82 |
-
outputs[inside_interval_mask], logabsdet[
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
|
|
|
|
|
|
|
|
93 |
|
94 |
return outputs, logabsdet
|
95 |
|
|
|
96 |
def rational_quadratic_spline(inputs,
|
97 |
unnormalized_widths,
|
98 |
unnormalized_heights,
|
99 |
unnormalized_derivatives,
|
100 |
inverse=False,
|
101 |
-
left=0.,
|
|
|
|
|
|
|
102 |
min_bin_width=DEFAULT_MIN_BIN_WIDTH,
|
103 |
min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
|
104 |
min_derivative=DEFAULT_MIN_DERIVATIVE):
|
@@ -118,7 +119,7 @@ def rational_quadratic_spline(inputs,
|
|
118 |
cumwidths = F.pad(cumwidths, pad=(1, 0), mode='constant', value=0.0)
|
119 |
cumwidths = (right - left) * cumwidths + left
|
120 |
cumwidths[..., 0] = left
|
121 |
-
cumwidths[..., -1] = right
|
122 |
widths = cumwidths[..., 1:] - cumwidths[..., :-1]
|
123 |
|
124 |
derivatives = min_derivative + F.softplus(unnormalized_derivatives)
|
@@ -129,7 +130,7 @@ def rational_quadratic_spline(inputs,
|
|
129 |
cumheights = F.pad(cumheights, pad=(1, 0), mode='constant', value=0.0)
|
130 |
cumheights = (top - bottom) * cumheights + bottom
|
131 |
cumheights[..., 0] = bottom
|
132 |
-
cumheights[..., -1] = top
|
133 |
heights = cumheights[..., 1:] - cumheights[..., :-1]
|
134 |
|
135 |
if inverse:
|
@@ -145,20 +146,20 @@ def rational_quadratic_spline(inputs,
|
|
145 |
input_delta = delta.gather(-1, bin_idx)[..., 0]
|
146 |
|
147 |
input_derivatives = derivatives.gather(-1, bin_idx)[..., 0]
|
148 |
-
input_derivatives_plus_one = derivatives[..., 1:].gather(-1, bin_idx)[...,
|
|
|
149 |
|
150 |
input_heights = heights.gather(-1, bin_idx)[..., 0]
|
151 |
|
152 |
if inverse:
|
153 |
-
a = (
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
b = (
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
c = - input_delta * (inputs - input_cumheights)
|
162 |
|
163 |
discriminant = b.pow(2) - 4 * a * c
|
164 |
assert (discriminant >= 0).all()
|
@@ -167,27 +168,33 @@ def rational_quadratic_spline(inputs,
|
|
167 |
outputs = root * input_bin_widths + input_cumwidths
|
168 |
|
169 |
theta_one_minus_theta = root * (1 - root)
|
170 |
-
denominator = input_delta + (
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
|
|
|
|
|
|
176 |
|
177 |
return outputs, -logabsdet
|
178 |
else:
|
179 |
theta = (inputs - input_cumwidths) / input_bin_widths
|
180 |
theta_one_minus_theta = theta * (1 - theta)
|
181 |
|
182 |
-
numerator = input_heights * (input_delta * theta.pow(2)
|
183 |
-
|
184 |
-
denominator = input_delta + (
|
185 |
-
|
|
|
186 |
outputs = input_cumheights + numerator / denominator
|
187 |
|
188 |
-
derivative_numerator = input_delta.pow(2) * (
|
189 |
-
|
190 |
-
|
191 |
-
|
|
|
|
|
192 |
|
193 |
return outputs, logabsdet
|
|
|
1 |
+
import numpy as np
|
2 |
import torch
|
3 |
from torch.nn import functional as F
|
4 |
|
|
|
|
|
|
|
5 |
DEFAULT_MIN_BIN_WIDTH = 1e-3
|
6 |
DEFAULT_MIN_BIN_HEIGHT = 1e-3
|
7 |
DEFAULT_MIN_DERIVATIVE = 1e-3
|
8 |
|
9 |
|
10 |
+
def piecewise_rational_quadratic_transform(
|
11 |
+
inputs,
|
12 |
+
unnormalized_widths,
|
13 |
+
unnormalized_heights,
|
14 |
+
unnormalized_derivatives,
|
15 |
+
inverse=False,
|
16 |
+
tails=None,
|
17 |
+
tail_bound=1.,
|
18 |
+
min_bin_width=DEFAULT_MIN_BIN_WIDTH,
|
19 |
+
min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
|
20 |
+
min_derivative=DEFAULT_MIN_DERIVATIVE):
|
21 |
|
22 |
if tails is None:
|
23 |
spline_fn = rational_quadratic_spline
|
24 |
spline_kwargs = {}
|
25 |
else:
|
26 |
spline_fn = unconstrained_rational_quadratic_spline
|
27 |
+
spline_kwargs = {'tails': tails, 'tail_bound': tail_bound}
|
|
|
|
|
|
|
28 |
|
29 |
outputs, logabsdet = spline_fn(
|
30 |
+
inputs=inputs,
|
31 |
+
unnormalized_widths=unnormalized_widths,
|
32 |
+
unnormalized_heights=unnormalized_heights,
|
33 |
+
unnormalized_derivatives=unnormalized_derivatives,
|
34 |
+
inverse=inverse,
|
35 |
+
min_bin_width=min_bin_width,
|
36 |
+
min_bin_height=min_bin_height,
|
37 |
+
min_derivative=min_derivative,
|
38 |
+
**spline_kwargs)
|
|
|
39 |
return outputs, logabsdet
|
40 |
|
41 |
|
42 |
def searchsorted(bin_locations, inputs, eps=1e-6):
|
43 |
+
bin_locations[..., bin_locations.size(-1) - 1] += eps
|
44 |
+
return torch.sum(inputs[..., None] >= bin_locations, dim=-1) - 1
|
45 |
+
|
46 |
+
|
47 |
+
def unconstrained_rational_quadratic_spline(
|
48 |
+
inputs,
|
49 |
+
unnormalized_widths,
|
50 |
+
unnormalized_heights,
|
51 |
+
unnormalized_derivatives,
|
52 |
+
inverse=False,
|
53 |
+
tails='linear',
|
54 |
+
tail_bound=1.,
|
55 |
+
min_bin_width=DEFAULT_MIN_BIN_WIDTH,
|
56 |
+
min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
|
57 |
+
min_derivative=DEFAULT_MIN_DERIVATIVE):
|
|
|
|
|
58 |
inside_interval_mask = (inputs >= -tail_bound) & (inputs <= tail_bound)
|
59 |
outside_interval_mask = ~inside_interval_mask
|
60 |
|
|
|
65 |
unnormalized_derivatives = F.pad(unnormalized_derivatives, pad=(1, 1))
|
66 |
constant = np.log(np.exp(1 - min_derivative) - 1)
|
67 |
unnormalized_derivatives[..., 0] = constant
|
68 |
+
unnormalized_derivatives[..., unnormalized_derivatives.size(-1) - 1] = constant
|
69 |
|
70 |
outputs[outside_interval_mask] = inputs[outside_interval_mask]
|
71 |
logabsdet[outside_interval_mask] = 0
|
72 |
else:
|
73 |
raise RuntimeError('{} tails are not implemented.'.format(tails))
|
74 |
|
75 |
+
outputs[inside_interval_mask], logabsdet[
|
76 |
+
inside_interval_mask] = rational_quadratic_spline(
|
77 |
+
inputs=inputs[inside_interval_mask],
|
78 |
+
unnormalized_widths=unnormalized_widths[inside_interval_mask, :],
|
79 |
+
unnormalized_heights=unnormalized_heights[inside_interval_mask, :],
|
80 |
+
unnormalized_derivatives=unnormalized_derivatives[
|
81 |
+
inside_interval_mask, :],
|
82 |
+
inverse=inverse,
|
83 |
+
left=-tail_bound,
|
84 |
+
right=tail_bound,
|
85 |
+
bottom=-tail_bound,
|
86 |
+
top=tail_bound,
|
87 |
+
min_bin_width=min_bin_width,
|
88 |
+
min_bin_height=min_bin_height,
|
89 |
+
min_derivative=min_derivative)
|
90 |
|
91 |
return outputs, logabsdet
|
92 |
|
93 |
+
|
94 |
def rational_quadratic_spline(inputs,
|
95 |
unnormalized_widths,
|
96 |
unnormalized_heights,
|
97 |
unnormalized_derivatives,
|
98 |
inverse=False,
|
99 |
+
left=0.,
|
100 |
+
right=1.,
|
101 |
+
bottom=0.,
|
102 |
+
top=1.,
|
103 |
min_bin_width=DEFAULT_MIN_BIN_WIDTH,
|
104 |
min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
|
105 |
min_derivative=DEFAULT_MIN_DERIVATIVE):
|
|
|
119 |
cumwidths = F.pad(cumwidths, pad=(1, 0), mode='constant', value=0.0)
|
120 |
cumwidths = (right - left) * cumwidths + left
|
121 |
cumwidths[..., 0] = left
|
122 |
+
cumwidths[..., cumwidths.size(-1) - 1] = right
|
123 |
widths = cumwidths[..., 1:] - cumwidths[..., :-1]
|
124 |
|
125 |
derivatives = min_derivative + F.softplus(unnormalized_derivatives)
|
|
|
130 |
cumheights = F.pad(cumheights, pad=(1, 0), mode='constant', value=0.0)
|
131 |
cumheights = (top - bottom) * cumheights + bottom
|
132 |
cumheights[..., 0] = bottom
|
133 |
+
cumheights[..., cumheights.size(-1) - 1] = top
|
134 |
heights = cumheights[..., 1:] - cumheights[..., :-1]
|
135 |
|
136 |
if inverse:
|
|
|
146 |
input_delta = delta.gather(-1, bin_idx)[..., 0]
|
147 |
|
148 |
input_derivatives = derivatives.gather(-1, bin_idx)[..., 0]
|
149 |
+
input_derivatives_plus_one = derivatives[..., 1:].gather(-1, bin_idx)[...,
|
150 |
+
0]
|
151 |
|
152 |
input_heights = heights.gather(-1, bin_idx)[..., 0]
|
153 |
|
154 |
if inverse:
|
155 |
+
a = (
|
156 |
+
((inputs - input_cumheights) *
|
157 |
+
(input_derivatives + input_derivatives_plus_one - 2 * input_delta)
|
158 |
+
+ input_heights * (input_delta - input_derivatives)))
|
159 |
+
b = (
|
160 |
+
input_heights * input_derivatives - (inputs - input_cumheights) *
|
161 |
+
(input_derivatives + input_derivatives_plus_one - 2 * input_delta))
|
162 |
+
c = -input_delta * (inputs - input_cumheights)
|
|
|
163 |
|
164 |
discriminant = b.pow(2) - 4 * a * c
|
165 |
assert (discriminant >= 0).all()
|
|
|
168 |
outputs = root * input_bin_widths + input_cumwidths
|
169 |
|
170 |
theta_one_minus_theta = root * (1 - root)
|
171 |
+
denominator = input_delta + (
|
172 |
+
(input_derivatives + input_derivatives_plus_one - 2 * input_delta)
|
173 |
+
* theta_one_minus_theta)
|
174 |
+
derivative_numerator = input_delta.pow(2) * (
|
175 |
+
input_derivatives_plus_one * root.pow(2) +
|
176 |
+
2 * input_delta * theta_one_minus_theta + input_derivatives *
|
177 |
+
(1 - root).pow(2))
|
178 |
+
logabsdet = torch.log(
|
179 |
+
derivative_numerator) - 2 * torch.log(denominator)
|
180 |
|
181 |
return outputs, -logabsdet
|
182 |
else:
|
183 |
theta = (inputs - input_cumwidths) / input_bin_widths
|
184 |
theta_one_minus_theta = theta * (1 - theta)
|
185 |
|
186 |
+
numerator = input_heights * (input_delta * theta.pow(2) +
|
187 |
+
input_derivatives * theta_one_minus_theta)
|
188 |
+
denominator = input_delta + (
|
189 |
+
(input_derivatives + input_derivatives_plus_one - 2 * input_delta)
|
190 |
+
* theta_one_minus_theta)
|
191 |
outputs = input_cumheights + numerator / denominator
|
192 |
|
193 |
+
derivative_numerator = input_delta.pow(2) * (
|
194 |
+
input_derivatives_plus_one * theta.pow(2) +
|
195 |
+
2 * input_delta * theta_one_minus_theta + input_derivatives *
|
196 |
+
(1 - theta).pow(2))
|
197 |
+
logabsdet = torch.log(
|
198 |
+
derivative_numerator) - 2 * torch.log(denominator)
|
199 |
|
200 |
return outputs, logabsdet
|
utils.py
CHANGED
@@ -1,8 +1,278 @@
|
|
|
|
|
|
|
|
1 |
import logging
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
|
8 |
class HParams():
|
@@ -35,42 +305,3 @@ class HParams():
|
|
35 |
|
36 |
def __repr__(self):
|
37 |
return self.__dict__.__repr__()
|
38 |
-
|
39 |
-
|
40 |
-
def load_checkpoint(checkpoint_path, model):
|
41 |
-
checkpoint_dict = load(checkpoint_path, map_location='cpu')
|
42 |
-
iteration = checkpoint_dict['iteration']
|
43 |
-
saved_state_dict = checkpoint_dict['model']
|
44 |
-
if hasattr(model, 'module'):
|
45 |
-
state_dict = model.module.state_dict()
|
46 |
-
else:
|
47 |
-
state_dict = model.state_dict()
|
48 |
-
new_state_dict = {}
|
49 |
-
for k, v in state_dict.items():
|
50 |
-
try:
|
51 |
-
new_state_dict[k] = saved_state_dict[k]
|
52 |
-
except:
|
53 |
-
logging.info("%s is not in the checkpoint" % k)
|
54 |
-
new_state_dict[k] = v
|
55 |
-
pass
|
56 |
-
if hasattr(model, 'module'):
|
57 |
-
model.module.load_state_dict(new_state_dict)
|
58 |
-
else:
|
59 |
-
model.load_state_dict(new_state_dict)
|
60 |
-
logging.info("Loaded checkpoint '{}' (iteration {})".format(
|
61 |
-
checkpoint_path, iteration))
|
62 |
-
return
|
63 |
-
|
64 |
-
|
65 |
-
def get_hparams_from_file(config_path):
|
66 |
-
with open(config_path, "r") as f:
|
67 |
-
data = f.read()
|
68 |
-
config = loads(data)
|
69 |
-
|
70 |
-
hparams = HParams(**config)
|
71 |
-
return hparams
|
72 |
-
|
73 |
-
|
74 |
-
def load_audio_to_torch(full_path, target_sampling_rate):
|
75 |
-
audio, sampling_rate = librosa.load(full_path, sr=target_sampling_rate, mono=True)
|
76 |
-
return FloatTensor(audio.astype(float32))
|
|
|
1 |
+
import argparse
|
2 |
+
import glob
|
3 |
+
import json
|
4 |
import logging
|
5 |
+
import os
|
6 |
+
import subprocess
|
7 |
+
import sys
|
8 |
+
|
9 |
+
import numpy as np
|
10 |
+
from scipy.io.wavfile import read
|
11 |
+
import torch
|
12 |
+
|
13 |
+
MATPLOTLIB_FLAG = False
|
14 |
+
|
15 |
+
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
|
16 |
+
logger = logging
|
17 |
+
|
18 |
+
|
19 |
+
def load_checkpoint(checkpoint_path, model, optimizer=None):
|
20 |
+
assert os.path.isfile(checkpoint_path)
|
21 |
+
checkpoint_dict = torch.load(checkpoint_path, map_location='cpu')
|
22 |
+
iteration = checkpoint_dict['iteration']
|
23 |
+
learning_rate = checkpoint_dict['learning_rate']
|
24 |
+
if optimizer is not None:
|
25 |
+
optimizer.load_state_dict(checkpoint_dict['optimizer'])
|
26 |
+
saved_state_dict = checkpoint_dict['model']
|
27 |
+
if hasattr(model, 'module'):
|
28 |
+
state_dict = model.module.state_dict()
|
29 |
+
else:
|
30 |
+
state_dict = model.state_dict()
|
31 |
+
new_state_dict = {}
|
32 |
+
for k, v in state_dict.items():
|
33 |
+
try:
|
34 |
+
new_state_dict[k] = saved_state_dict[k]
|
35 |
+
except Exception as e:
|
36 |
+
logger.info("%s is not in the checkpoint" % k)
|
37 |
+
new_state_dict[k] = v
|
38 |
+
if hasattr(model, 'module'):
|
39 |
+
model.module.load_state_dict(new_state_dict)
|
40 |
+
else:
|
41 |
+
model.load_state_dict(new_state_dict)
|
42 |
+
logger.info("Loaded checkpoint '{}' (iteration {})".format(
|
43 |
+
checkpoint_path, iteration))
|
44 |
+
return model, optimizer, learning_rate, iteration
|
45 |
+
|
46 |
+
|
47 |
+
def save_checkpoint(model, optimizer, learning_rate, iteration,
|
48 |
+
checkpoint_path):
|
49 |
+
logger.info(
|
50 |
+
"Saving model and optimizer state at iteration {} to {}".format(
|
51 |
+
iteration, checkpoint_path))
|
52 |
+
if hasattr(model, 'module'):
|
53 |
+
state_dict = model.module.state_dict()
|
54 |
+
else:
|
55 |
+
state_dict = model.state_dict()
|
56 |
+
torch.save(
|
57 |
+
{
|
58 |
+
'model': state_dict,
|
59 |
+
'iteration': iteration,
|
60 |
+
'optimizer': optimizer.state_dict(),
|
61 |
+
'learning_rate': learning_rate
|
62 |
+
}, checkpoint_path)
|
63 |
+
|
64 |
+
|
65 |
+
def summarize(
|
66 |
+
writer,
|
67 |
+
global_step,
|
68 |
+
scalars={}, # noqa
|
69 |
+
histograms={}, # noqa
|
70 |
+
images={}, # noqa
|
71 |
+
audios={}, # noqa
|
72 |
+
audio_sampling_rate=22050):
|
73 |
+
for k, v in scalars.items():
|
74 |
+
writer.add_scalar(k, v, global_step)
|
75 |
+
for k, v in histograms.items():
|
76 |
+
writer.add_histogram(k, v, global_step)
|
77 |
+
for k, v in images.items():
|
78 |
+
writer.add_image(k, v, global_step, dataformats='HWC')
|
79 |
+
for k, v in audios.items():
|
80 |
+
writer.add_audio(k, v, global_step, audio_sampling_rate)
|
81 |
+
|
82 |
+
|
83 |
+
def latest_checkpoint_path(dir_path, regex="G_*.pth"):
|
84 |
+
f_list = glob.glob(os.path.join(dir_path, regex))
|
85 |
+
f_list.sort(key=lambda f: int("".join(filter(str.isdigit, f))))
|
86 |
+
x = f_list[-1]
|
87 |
+
print(x)
|
88 |
+
return x
|
89 |
+
|
90 |
+
|
91 |
+
def plot_spectrogram_to_numpy(spectrogram):
|
92 |
+
global MATPLOTLIB_FLAG
|
93 |
+
if not MATPLOTLIB_FLAG:
|
94 |
+
import matplotlib
|
95 |
+
matplotlib.use("Agg")
|
96 |
+
MATPLOTLIB_FLAG = True
|
97 |
+
mpl_logger = logging.getLogger('matplotlib')
|
98 |
+
mpl_logger.setLevel(logging.WARNING)
|
99 |
+
import matplotlib.pylab as plt
|
100 |
+
import numpy as np
|
101 |
+
|
102 |
+
fig, ax = plt.subplots(figsize=(10, 2))
|
103 |
+
im = ax.imshow(spectrogram,
|
104 |
+
aspect="auto",
|
105 |
+
origin="lower",
|
106 |
+
interpolation='none')
|
107 |
+
plt.colorbar(im, ax=ax)
|
108 |
+
plt.xlabel("Frames")
|
109 |
+
plt.ylabel("Channels")
|
110 |
+
plt.tight_layout()
|
111 |
+
|
112 |
+
fig.canvas.draw()
|
113 |
+
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
|
114 |
+
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3, ))
|
115 |
+
plt.close()
|
116 |
+
return data
|
117 |
+
|
118 |
+
|
119 |
+
def plot_alignment_to_numpy(alignment, info=None):
|
120 |
+
global MATPLOTLIB_FLAG
|
121 |
+
if not MATPLOTLIB_FLAG:
|
122 |
+
import matplotlib
|
123 |
+
matplotlib.use("Agg")
|
124 |
+
MATPLOTLIB_FLAG = True
|
125 |
+
mpl_logger = logging.getLogger('matplotlib')
|
126 |
+
mpl_logger.setLevel(logging.WARNING)
|
127 |
+
import matplotlib.pylab as plt
|
128 |
+
import numpy as np
|
129 |
+
|
130 |
+
fig, ax = plt.subplots(figsize=(6, 4))
|
131 |
+
im = ax.imshow(alignment.transpose(),
|
132 |
+
aspect='auto',
|
133 |
+
origin='lower',
|
134 |
+
interpolation='none')
|
135 |
+
fig.colorbar(im, ax=ax)
|
136 |
+
xlabel = 'Decoder timestep'
|
137 |
+
if info is not None:
|
138 |
+
xlabel += '\n\n' + info
|
139 |
+
plt.xlabel(xlabel)
|
140 |
+
plt.ylabel('Encoder timestep')
|
141 |
+
plt.tight_layout()
|
142 |
+
|
143 |
+
fig.canvas.draw()
|
144 |
+
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
|
145 |
+
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3, ))
|
146 |
+
plt.close()
|
147 |
+
return data
|
148 |
+
|
149 |
+
|
150 |
+
def load_wav_to_torch(full_path):
|
151 |
+
sampling_rate, data = read(full_path)
|
152 |
+
return torch.FloatTensor(data.astype(np.float32)), sampling_rate
|
153 |
+
|
154 |
+
|
155 |
+
def load_filepaths_and_text(filename, split="|"):
|
156 |
+
with open(filename, encoding='utf-8') as f:
|
157 |
+
filepaths_and_text = [line.strip().split(split) for line in f]
|
158 |
+
return filepaths_and_text
|
159 |
+
|
160 |
+
|
161 |
+
def get_hparams(init=True):
|
162 |
+
parser = argparse.ArgumentParser()
|
163 |
+
parser.add_argument('-c',
|
164 |
+
'--config',
|
165 |
+
type=str,
|
166 |
+
default="./configs/base.json",
|
167 |
+
help='JSON file for configuration')
|
168 |
+
parser.add_argument('-m',
|
169 |
+
'--model',
|
170 |
+
type=str,
|
171 |
+
required=True,
|
172 |
+
help='Model name')
|
173 |
+
parser.add_argument('--train_data',
|
174 |
+
type=str,
|
175 |
+
required=True,
|
176 |
+
help='train data')
|
177 |
+
parser.add_argument('--val_data', type=str, required=True, help='val data')
|
178 |
+
parser.add_argument('--phone_table',
|
179 |
+
type=str,
|
180 |
+
required=True,
|
181 |
+
help='phone table')
|
182 |
+
parser.add_argument('--speaker_table',
|
183 |
+
type=str,
|
184 |
+
default=None,
|
185 |
+
help='speaker table, required for multiple speakers')
|
186 |
+
|
187 |
+
args = parser.parse_args()
|
188 |
+
model_dir = args.model
|
189 |
+
|
190 |
+
if not os.path.exists(model_dir):
|
191 |
+
os.makedirs(model_dir)
|
192 |
+
|
193 |
+
config_path = args.config
|
194 |
+
config_save_path = os.path.join(model_dir, "config.json")
|
195 |
+
if init:
|
196 |
+
with open(config_path, "r", encoding='utf8') as f:
|
197 |
+
data = f.read()
|
198 |
+
with open(config_save_path, "w", encoding='utf8') as f:
|
199 |
+
f.write(data)
|
200 |
+
else:
|
201 |
+
with open(config_save_path, "r", encoding='utf8') as f:
|
202 |
+
data = f.read()
|
203 |
+
config = json.loads(data)
|
204 |
+
config['data']['training_files'] = args.train_data
|
205 |
+
config['data']['validation_files'] = args.val_data
|
206 |
+
config['data']['phone_table'] = args.phone_table
|
207 |
+
# 0 is kept for blank
|
208 |
+
config['data']['num_phones'] = len(open(args.phone_table).readlines()) + 1
|
209 |
+
if args.speaker_table is not None:
|
210 |
+
config['data']['speaker_table'] = args.speaker_table
|
211 |
+
# 0 is kept for unknown speaker
|
212 |
+
config['data']['n_speakers'] = len(
|
213 |
+
open(args.speaker_table).readlines()) + 1
|
214 |
+
else:
|
215 |
+
config['data']['n_speakers'] = 0
|
216 |
+
|
217 |
+
hparams = HParams(**config)
|
218 |
+
hparams.model_dir = model_dir
|
219 |
+
return hparams
|
220 |
+
|
221 |
+
|
222 |
+
def get_hparams_from_dir(model_dir):
|
223 |
+
config_save_path = os.path.join(model_dir, "config.json")
|
224 |
+
with open(config_save_path, "r") as f:
|
225 |
+
data = f.read()
|
226 |
+
config = json.loads(data)
|
227 |
+
|
228 |
+
hparams = HParams(**config)
|
229 |
+
hparams.model_dir = model_dir
|
230 |
+
return hparams
|
231 |
+
|
232 |
+
|
233 |
+
def get_hparams_from_file(config_path):
|
234 |
+
with open(config_path, "r") as f:
|
235 |
+
data = f.read()
|
236 |
+
config = json.loads(data)
|
237 |
+
|
238 |
+
hparams = HParams(**config)
|
239 |
+
return hparams
|
240 |
+
|
241 |
+
|
242 |
+
def check_git_hash(model_dir):
|
243 |
+
source_dir = os.path.dirname(os.path.realpath(__file__))
|
244 |
+
if not os.path.exists(os.path.join(source_dir, ".git")):
|
245 |
+
logger.warn('''{} is not a git repository, therefore hash value
|
246 |
+
comparison will be ignored.'''.format(source_dir))
|
247 |
+
return
|
248 |
+
|
249 |
+
cur_hash = subprocess.getoutput("git rev-parse HEAD")
|
250 |
+
|
251 |
+
path = os.path.join(model_dir, "githash")
|
252 |
+
if os.path.exists(path):
|
253 |
+
saved_hash = open(path).read()
|
254 |
+
if saved_hash != cur_hash:
|
255 |
+
logger.warn(
|
256 |
+
"git hash values are different. {}(saved) != {}(current)".
|
257 |
+
format(saved_hash[:8], cur_hash[:8]))
|
258 |
+
else:
|
259 |
+
open(path, "w").write(cur_hash)
|
260 |
+
|
261 |
+
|
262 |
+
def get_logger(model_dir, filename="train.log"):
|
263 |
+
global logger
|
264 |
+
logger = logging.getLogger(os.path.basename(model_dir))
|
265 |
+
logger.setLevel(logging.INFO)
|
266 |
+
|
267 |
+
formatter = logging.Formatter(
|
268 |
+
"%(asctime)s\t%(name)s\t%(levelname)s\t%(message)s")
|
269 |
+
if not os.path.exists(model_dir):
|
270 |
+
os.makedirs(model_dir)
|
271 |
+
h = logging.FileHandler(os.path.join(model_dir, filename))
|
272 |
+
h.setLevel(logging.INFO)
|
273 |
+
h.setFormatter(formatter)
|
274 |
+
logger.addHandler(h)
|
275 |
+
return logger
|
276 |
|
277 |
|
278 |
class HParams():
|
|
|
305 |
|
306 |
def __repr__(self):
|
307 |
return self.__dict__.__repr__()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|