Mahiruoshi's picture
Update app.py
d5dd52d
raw
history blame
4.78 kB
import time
import matplotlib.pyplot as plt
import IPython.display as ipd
import re
import os
import json
import math
import torch
from torch import nn
from torch.nn import functional as F
from torch.utils.data import DataLoader
import gradio as gr
import commons
import utils
from data_utils import TextAudioLoader, TextAudioCollate, TextAudioSpeakerLoader, TextAudioSpeakerCollate
from models import SynthesizerTrn
from text.symbols import symbols
from text import text_to_sequence
import unicodedata
from scipy.io.wavfile import write
def get_text(text, hps):
text_norm = text_to_sequence(text, hps.data.text_cleaners)
if hps.data.add_blank:
text_norm = commons.intersperse(text_norm, 0)
text_norm = torch.LongTensor(text_norm)
return text_norm
def get_label(text, label):
if f'[{label}]' in text:
return True, text.replace(f'[{label}]', '')
else:
return False, text
def selection(speaker):
if speaker == "高咲侑":
spk = 0
return spk
elif speaker == "歩夢":
spk = 1
return spk
elif speaker == "かすみ":
spk = 2
return spk
elif speaker == "しずく":
spk = 3
return spk
elif speaker == "果林":
spk = 4
return spk
elif speaker == "愛":
spk = 5
return spk
elif speaker == "彼方":
spk = 6
return spk
elif speaker == "せつ菜":
spk = 7
return spk
elif speaker == "エマ":
spk = 8
return spk
elif speaker == "璃奈":
spk = 9
return spk
elif speaker == "栞子":
spk = 10
return spk
elif speaker == "ランジュ":
spk = 11
return spk
elif speaker == "ミア":
spk = 12
return spk
elif speaker == "派蒙":
spk = 16
return spk
def sle(language,tts_input0):
if language == "中文":
tts_input1 = "[ZH]" + tts_input0.replace('\n','。').replace(' ',',') + "[ZH]"
return tts_input1
if language == "英文":
tts_input1 = "[EN]" + tts_input0.replace('\n','.').replace(' ',',') + "[EN]"
return tts_input1
elif language == "日文":
tts_input1 = "[JA]" + tts_input0.replace('\n','。').replace(' ',',') + "[JA]"
return tts_input1
def infer(language,text,speaker_id, n_scale= 0.667,n_scale_w = 0.8, l_scale = 1 ):
speaker_id = int(selection(speaker_id))
answer = sle(language,text)
stn_tst = get_text(answer, hps_ms)
with torch.no_grad():
x_tst = stn_tst.unsqueeze(0).to(dev)
x_tst_lengths = torch.LongTensor([stn_tst.size(0)]).to(dev)
sid = torch.LongTensor([speaker_id]).to(dev)
t1 = time.time()
audio = net_g_ms.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=n_scale, noise_scale_w=n_scale_w, length_scale=l_scale)[0][0,0].data.cpu().float().numpy()
t2 = time.time()
spending_time = "推理时间:"+str(t2-t1)+"s"
image = '1.png'
print(spending_time)
return (hps_ms.data.sampling_rate, audio),image
lan = ["中文","日文","英文"]
idols = ["高咲侑","歩夢","かすみ","しずく","果林","愛","彼方","せつ菜","璃奈","栞子","エマ","ランジュ","ミア","派蒙"]
dev = torch.device("cpu")
hps_ms = utils.get_hparams_from_file("config.json")
net_g_ms = SynthesizerTrn(
len(symbols),
hps_ms.data.filter_length // 2 + 1,
hps_ms.train.segment_size // hps_ms.data.hop_length,
n_speakers=hps_ms.data.n_speakers,
**hps_ms.model).to(dev)
_ = net_g_ms.eval()
_ = utils.load_checkpoint("G_874000.pth", net_g_ms, None)
app = gr.Blocks()
with app:
with gr.Tabs():
with gr.TabItem("Basic"):
tts_input1 = gr.TextArea(label="VITS模型,绝赞训练中", value="一次審査、二次審査、それぞれの欄に記入をお願いします。")
language = gr.Dropdown(label="选择语言",choices=lan, value="日文", interactive=True)
para_input1 = gr.Slider(minimum= 0.01,maximum=1.0,label="更改噪声比例", value=0.667)
para_input2 = gr.Slider(minimum= 0.01,maximum=1.0,label="更改噪声偏差", value=0.8)
para_input3 = gr.Slider(minimum= 0.1,maximum=10,label="更改时间比例", value=1)
tts_submit = gr.Button("Generate", variant="primary")
speaker1 = gr.Dropdown(label="选择说话人",choices=idols, value="かすみ", interactive=True)
tts_output2 = gr.Audio(label="Output")
tts_output3 = gr.Image(label = "Model")
tts_submit.click(infer, [language,tts_input1,speaker1,para_input1,para_input2,para_input3], [tts_output2,tts_output3])
#app.launch(share=True)
app.launch()